18EE46

Fourth Semester B.E. Degree Examination, June/July 2023 Operational Amplifiers and Linear ICs

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define the following terms:
 - i) Bandwidth
 - ii) CMRR
 - iii) Slewrate
 - iv) Input offset voltage.

(08 Marks)

b. Mention the ideal characteristics of Op-Amp.

(06 Marks)

c. Draw the block diagram of Op-Amp and explain.

(06 Marks)

OR

- 2 a. Derive an expression for the output of three inputs inverting amplifier and averaging amplifier. (12 Marks)
 - b. Determine the value of all the components to design a peaking amplifier with a gain of 18 at a frequency of 25kHz. (06 Marks)
 - c. Mention the good instrumentation amplifier requirements.

(02 Marks)

Module-2

a. Compare an Active filter and Passive filter.

(06 Marks)

- b. With a neat circuit diagram, explain second order low pass Butterworth filter. Derive the expression for the gain of the filter. (10 Marks)
 - What are the advantages of active filter over the passive filter?

(04 Marks)

OR

- 4 a. Define voltage regulator. With a neat block diagram, explain the regulated power supply.

 (12 Marks)
 - b. With a neat circuit diagram, explain voltage follower regulator using Op-Amp. (08 Marks)

Module-3

- 5 a. With the neat circuit diagram, explain operation of triangular wave generator using Op-Amp. (06 Marks)
 - b. Explain the operation of RC-Phase shift oscillator using Op-Amp.

(08 Marks)

c. Draw the circuit of an output stage for controlling the output amplitude and DC voltage level of a signal generator. Explain the operation. (06 Marks)

OR

- 6 a. Explain with the neat circuit diagram and waveform, the operation of inverting and non inverting zero crossing detector.

 (10 Marks)
 - b. Comparison between Schmitt trigger and comparator.

(06 Marks)

c. For a non inverting regenerative comparator $R_1 = 100 \text{K}\Omega$, $R_2 = 1 \text{K}\Omega$ and $V_{\text{sat}} = \pm 13.5 \text{V}$. Calculate tripping voltage. (04 Marks)

Module-4

- What is precision rectifier? Draw and explain the operation of full wave precision rectifier (10 Marks) using Op-Amp.
 - Explain the half wave precision rectifier clipper circuit using Op-Amp. (10 Marks)

- Define the following terms of D/A converter: 8
 - Resolution i)
 - ii) Accuracy
 - Monotonicity iii)
 - Conversion time iv)
 - Stability. (10 Marks) v) (10 Marks)
 - With a neat diagram, explain the working of R-2R ADC

Module-5

- What is PLL? With neat diagram explain the PLL. 9 (08 Marks)
 - Define lock range, capture range and pull in time for PLL. (06 Marks)
 - Explain how XOR gates can be used as phase detector in PLL. (06 Marks)

OR

- Explain the basic working principle of timer circuit. (10 Marks) 10
 - With a neat circuit diagram, explain astable multivibrator using IC555. (10 Marks)