CO Same To	Man 4 / 1 / No		
2.2.	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
JSN		1 1 1	
C TALL	1 1 1 2 2	1 1 1	

18EE34

Third Semester B.E. Degree Examination, June/July 2023 Analog Electronic Circuit

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define Q or Operating point

(02 Marks)

- b. What is a clipper circuit? Explain the working of a double ended clipper with a suitable diagram. (08 Marks)
- c. List various types of clamper circuit. With a neat circuit diagram, explain the working of a negative clamper. (10 Marks)

OR

- 2 a. Discuss emitter stablized bias circuit. Also derive expression for I_B, I_C, V_B and V_c. (10 Marks)
 - b. Determine the following for the fixed bias configuration of Fig.2(b). Assume β =50.
 - (i) I_{BQ} and I_{CQ} (ii) V_{CEQ} (iii) V_B and V_C (iv) V_{BC}

(10 Marks)

Module-2

- 3 a. Derive an expression for A_y , Zi and Zo of CE voltage divider bias circuit using hybrid model. (10 Marks)
 - b. For the collector feedback configuration of Fig 3(b), calculate (i) r_e (ii) Zi and Zo (iii) A_y and A_I Consider β =200, r_o =60Kr.

(10 Marks)

OR

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

For the network of fig 4(a), determine: (i) r_e (ii) Z_i (iii) Z_o (r_o =00) (iv) A_v (r_o = ∞) a.

Fig.4(a)

Why hybrid model is called as hybrid? Obtain h – parameters from equivalent circuit of b. common – emitter configuration. (10 Marks)

Module-3

- 5 a. Define Multistage Amplifier. Derive voltage gain and current gain of a two stage cascaded amplifier. (10 Marks)
 - b. Derive an expression for Zi and Ai for Darlington Emitter follower circuit. (10 Marks)

OR

a. Find out input and output impedance of a current series feedback amplifier. (10 Marks)
 b. Determine the voltage gain, input and output impedance with feedback for voltage series

feedback having A=-100, $Ri=10~k\Omega$, $R_0=20~k\Omega$ for feedback of i) $\beta=-0.1$ and ii) $\beta=-0.5$.

(10 Marks)

(10 Marks)

Module-4

- 7 a. With a neat circuit diagram, explain the AC Operation of series fed class A amplifier.

 Also derive maximum efficiency of the amplifier. (10 Marks)
 - b. Show that maximum efficiency of Class B push pull power amplifier is 78.54%. (10 Marks)

OR

- 8 a. Explain the working of R.C phase shift oscillator. If $R=1~k\Omega$, $R_c=1~k\Omega$ and $C=0.1\mu f$, Calculate the frequency of oscillations. (10 Marks)
 - b. Discuss the working of Wein Bridge Oscillator, with a suitable diagram.

Module-5

- 9 a. Describe the working and characteristics of M Channel JFET. (10 Marks)
 - b. For a self bias circuit, V_{DD} = + 20 , R_D = 3.3 k Ω , R_G = 1 M Ω , R_S = 1 k Ω , I_{DSS} = 8mA and V_P = -6V. Determine i) V_{GS} ii) I_D iii) V_{DS} iv) V_S v) V_G vi) V_D . (10 Marks)

OR

10 a. With a neat structure, explain the operation of an n – channel depletion type MOSFET.

(10 Marks)

b. Compare JFET with MOSFET. Sketch the transfer characteristics for an N- channel depletion type MOSFET with $I_{DSS}=10 \text{mA}$ and $V_P=-4V$. (10 Marks)

* * * * *