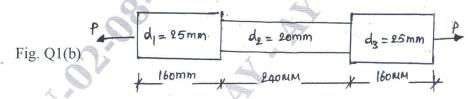


USN

15CV/CT32

Third Semester B.E. Degree Examination, June/July 2023 Strength of Materials

Time: 3 hrs.


Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

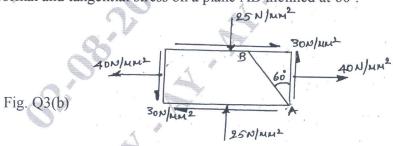
Module-1

- a. Define: i) Bulk modulus ii) Rigidity modulus iii) Poisson's ratio. (06 Marks)
 - b. The bar shown in Fig. Q1(b) is tested in universal testing machine. It is observed that at a load of 40kN, the total extension of the bar is 0.285mm. Determine the Young's modulus of the material.

 (10 Marks)

OR

- 2 a. Show that for Multiaxial loading, Volumetric strain is equal to the algebraic sum of the three linear strains in three mutually perpendicular directions. (06 Marks)
 - b. A steel rod 20mm in diameter and 6m long is connected to two grips at ends at a temperature of 120°C. Find the pull exerted when the temperature falls to 40°C.
 - i) If the ends do not yield
- ii) If the ends yielded by 1.1mm.


Take $\alpha = 1.2 \times 10^{-5} / {}^{\circ}\text{C}$ and $E = 2 \times 10^{5} \text{ N/mm}^{2}$.

(10 Marks)

Module-2

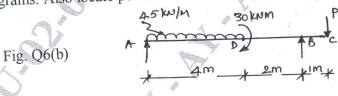
- 3 a. Define i) Principal stress ii) Principal planes. (04 Marks)
 - b. At a point in a piece of elastic material, there are three mutually perpendicular planes on which the stresses are as shown in Fig. Q3(b). Determine
 - i) Principal stresses and Principal planes.
 - ii) Normal and tangential stress on a plane AB inclined at 60°.

(12 Marks)

OR

- a. Derive an expression for volumetric strain of a cylinder of internal diameter 'd' and thickness 't' subjected to an internal pressure of intensity 'p'. (06 Marks)
 - b. A cylindrical thin shell 800mm diameter and 3m long is 1mm thick has closed ends and is subjected to an internal fluid pressure of 2.8N/mm^2 . If $E = 210000 \text{N/mm}^2$, Poisson's ratio = 0.3, estimate the percentage inverse in internal volume of the tube.

(10 Marks)


Module-3

- Derive the relationship between the Intensity of load, Shear force and Bending moment. (06 Marks)
 - Draw Shear force and Bending moment diagram for the beam shown in Fig. Q5(b). (10 Marks)

100 KM. Fig. Q5(b)

OR

- iii) Point of Contra flexure. (03 Marks) ii) Bending moment Define i) Shear force
 - For the beam shown in Fig. Q6(b), determine the magnitude of the load 'P' acting at 'C' such that the reactions at the supports A and B are equal. Draw Shear force and bending (13 Marks) moment diagrams. Also locate point of contra flexure if any.

(04 Marks)

State the Assumptions in Bending theory. A rectangular beam 100mm × 150mm is simply supported over a span of 5m. Determine the safe udl on this span, if the bending stress is not to exceed 1000N/mm² and shear stress not to exceed 700N/mm².

- Show that the maximum shear stress for a rectangular section is 1.5 times average shear 8
 - A mild steel tube 3.5m long, 25mm internal diameter and 5mm thick is used as a short ii) Both ends fixed column with i) Both ends hinged
 - iii) One end fixed and other end free. Find the crippling load and the corresponding (08 Marks) critical stress developed. Take $E = 2.1 \times 10^5 \text{ N/mm}^2$.

(06 Marks) Derive the torsion equation with usual notations. b. A hollow circular shaft with 250mm external diameter and thickness of metal 25mm transmits power at 180 r.p.m. The angle of twist over a length of 3m was found to be 0.72 degrees. Calculate the power transmitted and the maximum shear stress induced in the section. Take modulus of rigidity $C = 84 \times 10^9 \text{ N/mm}^2$.

- ii) Maximum Shearing Stress theory. Explain: i) Maximum Principal Shear theory
 - b. A solid circular shaft is subjected to a bending moment of 9000Nm and a twisting moment of 12000Nm. In a simple uniaxial tensile test of the same material, it gave the following particulars: Stress at yield point = 3000N/mm², E = 200GN/mm². Estimate the diameter required using Maximum Principal Stress theory.