GBCS SCHEME

1.00	3 W. W. W. C.		
USN			18CS61

Sixth Semester B.E. Degree Examination, June/July 2023 System Software and Compilers

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. With reference to SIC/XE machine architectures explain instruction formats and addressing modes, clearly indicating the settings of different flag bits. (10 Marks)
 - b. With an illustrate example, explain the need for a two pass assembler. Explain the data structures used in 2-pass assembler. Mention their functions clearly during pass 1 and pass 2.

 (10 Marks)

OR

2 a. Generate the complete object program for the following SIC/XE assembly language programs. Assume: CLEAR = B4, LDT = 74, TD = EO, JEQ = 30, TIXR = B8, JLT = 38, RSUB = 4C, LDCH = 50, WD = DC, X = 1, T = 5.

WRREC	START	105D
A	CLEAR	X
	LDT	LENGTH
WLOOP	TD	OUTPUT
4	JEQ	WLOOP
	LDCH	BUFFER, X
	WD	OUTPUT
	TIXR	T
	JLT	WLOOP
	RSUB 🧳	*
OUTPUT	BYTE	X'O5'
BUFFER	RESB	400
LENGTH	RESB	2
4	END	WRREC

(10 Marks) (10 Marks)

b. Explain the absolute loader and Bootstrap loader with algorithm/source code.

Module-2

- a. What is a Compiler? Explain the various phases of a compiler with a neat diagram and show the output of each phase for the expression a = b + c * 25. Assume all variable are a type float.
 - b. Write a note on the commonly used compiler construction tools. (04 Marks)
 - c. Describe Input Buffering mechanism with an algorithm for lookahead code with sentinels.
 (06 Marks)

OR

- 4 a. Construct the transition diagrams to recognize the tokens given below and explain the same.

 i) relop

 ii) Identifier

 iii) unsigned numbers

 (10 Marks)
 - b. With example, define the operations on languages. (04 Marks)
 - c. Discuss the issues/errors of lexical analysis and the error recovery actions that can be performed. (06 Marks)

Module-3

- What is recursive-decent parsing? Explain with a pseudocode. Take the grammar $S \rightarrow cAd$, $A \rightarrow ab|a$ as an example and trace it for input string w = cad. Explain how backtracking can be used for tracing.
 - b. Consider the context free grammar:

 $S \rightarrow SS + |SS|^* |a|$ and string $W = aa + a^*$

- i) Give the leftmost and rightmost derivation and parse tree for the string
- ii) Is the grammar ambiguous or unambiguous? Justify your answer

iii) Eliminate left Recursion

(10 Marks)

- With a neat diagram, explain the model of a table driven predictive parser. Write and explain the predictive parsing algorithm.
 - b. Consider the following grammar with terminals (, [,),].

 $S \rightarrow TS \mid [S] S \mid)S \mid \in$

 $T \rightarrow (X)$

 $X \to TX \mid [X] X \in$

- i) Construct FIRST and FOLLOW sets
- ii) Construct its LL(1) parsing table

iii) Is this grammar LL(1)?

(10 Marks)

Module-4

Explain the meta – characters used in regular expression with examples. (10 Marks) Write a LEX program to recognize and count the number of identifiers in a given input file. Show how the program is complied and executed.

- What are the ambiguities that arise while evaluating a regular expression? Explain with 8
 - b. Write a YACC program to recognize a valid arithmetic expression that uses operators +, -, * and /.

- What is a dependency graph? Give a syntax directed definition for simple type declaration including int and float type. Construct annotated parse tree and dependency graph for the
 - b. Explain synthesized attribute, inherited attribute, S attributed definition and L- attributed definitions with examples.

OR

- What is a three address code? explain the different ways of representing three address 10 codes with examples.
 - What is target computer model? Explain the different kinds of instructions and addressing modes available in assembly language or a target machine.