Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define the following terms with examples:
 - (i) Alphabet (ii) Length of string (iii) prefix

(05 Marks)

b. Build a DFSM for the language:

 $L = \{\omega \in \{a, b\}^* : \text{no two consecutive characters are the same}\}\$

(05 Marks)

c. For the following NDFSM, use ndfsmtodfsm to construct an equivalent DFSM. Begin by showing the value of eps(q) for each state q.

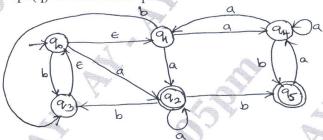
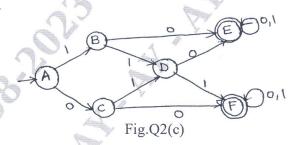


Fig.Q1(c)


(06 Marks)

OR

2 a. Explain the Machine-Based Hierarchy of Language classes.

(05 Marks)

- b. Build a nondeterministic FSM for the language $L = \{\omega \in \{a, b\}^* : \omega = bab \text{ or } |\omega| \text{ is odd} \}$. (05 Marks)
- c. Minimize the DFSM.

(06 Marks)

Module-2

- 3 a. Define Regular Expression and write a RE to describe each of the following language:
 - (i) $L = \{a^n b^m : n \ge 4, m \le 3\}$
 - (ii) $L = \{\omega \in \{a, b\}^* : \omega \text{ has both aa and bb as substrings}\}$

(05 Marks)

b. Show that Regular Languages are closed under complement.

(05 Marks)

c. Build a Regular Expression from the given FSM.

Fig.Q3(c)

(06 Marks)

2. Any revealing of identification, appeal to evaluator and $\sqrt{\alpha}$ equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

OR

Show a regular grammar for the FSM.

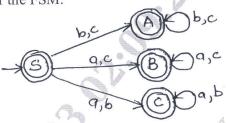


Fig.Q4(a) (05 Marks)

b. Build an FSM from the RE (a*\ob*c*)*

(05 Marks)

State and prove the pumping lemma for Regular Languages

(06 Marks)

Module-3

- $\label{eq:define_loss} Define \ context \ free \ grammar. \ Design \ a \ CFG \ for \ the \ language \ L = \{a^nb^mc^md^{2n}: n, m \geq 0\}.$ 5
 - Consider the CFG with productions

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid 0 \mid 1$$

Write the leftmost derivation, rightmost derivation and a parse tree for the string 0 + 1 * 1.

(05 Marks)

Design a PDA for the language $L = \{a^nb^{2n} : n \ge 0\}$

(06 Marks)

Prove whether the given grammar is ambiguous grammar or not. 6

$$S \rightarrow aB|bA$$

$$A \rightarrow aS|bAA|a$$

$$B \rightarrow bS \mid aBB \mid b$$
 for the string aab.

(05 Marks)

b. Define Chomsky normal form. Apply the normalization algorithm to convert the grammar to CNF.

$$S \rightarrow ABC$$

$$A \rightarrow aC \mid D$$

$$B \rightarrow bB \mid \in \mid A$$

$$C \rightarrow Ac \mid \in \mid Cc$$

$$D \rightarrow aa$$

(05 Marks)

Design a PDA for the language $L = \{a^i b^j c^k : i + j = k, i \ge 0, j \ge 0\}.$

(06 Marks)

Module-4

a. Prove that the language $L = \{a^nb^nc^n : n \ge 1\}$ is not context free.

(05 Marks)

Show that context free languages are closure under union, concatenation and kleene star. (05 Marks)

Design a Turing Machine to recognize all strings consisting of an even number of 1's. (06 Marks)

a. Explain technique used for TM construction.

(05 Marks)

- b. What is the relationship between DCFL's and the L's that are not inherently ambiguous? Explain.
- c. Design a Turing Machine that accepts $L = \{a^nb^n : n \ge 1\}$. Obtain the instantaneous description for the string aabb. (06 Marks)

2 of 3

Module-5

9 a. Let $f(n) = 4n^3 + 5n^2 + 7n + 3$. Prove that $f(n) = O(n^3)$. (05 Marks)

b. Write a note on quantum computers. (05 Marks)

c. Find the running time for the Euclidean algorithm for evaluating gcd(a, b) where a and b are positive integers expressed in binary representation. (06 Marks)

OR

10 a. Explain the multi-tape TM. (05 Marks)

b. Explain the model of Linear Bounded Automata. (05 Marks)

c. Define PCP. Does the PCP with two lists $x = (b, bab^3, ba)$ and $y = (b^3, ba, a)$ have a solution. (06 Marks)

3 of 3