CBCS SCHEME

21CS33

Third Semester B.E. Degree Examination, June/July 2023 **Analog and Digital Electronics**

Time: 3 hrs.

b.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1	
With a neat diagram and mathematical analysis explain fixed bias circuit.	(06 Marks)
With hysteresis characteristics explain the working of Inverting Schmitt trigger.	(06 Marks)
Explain current to voltage and voltage to current convertor.	(08 Marks)

Discuss Regulated power supply parameters.

(06 Marks) (06 Marks)

Explain the working of R-2R ladder D to A convertor. Explain successive approximation A to D convertor.

(08 Marks)

Module-2

Minimize the following function using K-map and implement it using basic gates. 3

 $f(A, B, C, D) = \sum m(0, 1, 2, 5, 7, 8, 9, 10, 13, 15)$

(06 Marks)

Simplify the following function using Quine McClusky method.

 $f(A, B, C, D) = \sum m(0, 1, 2, 3, 5, 7, 8, 10, 12, 13, 15)$

(08 Marks)

Minimize the following function for POS using K-map and realize using basic gains

 $f(a, b, c, d) = \pi M(0, 1, 6, 8, 11, 12) + d(3, 7, 4, 15)$

(06 Marks)

OR

With an example explain Petrick's method.

(06 Marks)

Simplify the following function using Quine - McClusky method

 $f(A, B, C, D) = \sum m(2, 3, 7, 9, 11, 13) + \sum d(1, 10, 15)$

(08 Marks)

With the help of flow chart explain how to determine minimum sum of products using (06 Marks) Karnaugh map.

Module-3

Explain with neat diagram static 'O' hazard and how Static-O hazard can be detected and (08 Marks) removed with example.

b. What is multiplexer, explain 8-to-1 multiplexer with the help of logic diagram and (06 Marks) corresponding expression.

Explain with a neat diagram 3:8 decoder.

(06 Marks)

Implement the following function using PLA.

 $f_1(a, b, c) = \sum m(0, 4, 6, 7)$

 $f_2(a, b, c) = \sum m(4, 6)$

(06 Marks)

Explain seven segment decoder and realize using PLA.

(10 Marks)

Explain simulation and testing of digital circuits.

(04 Marks)

	Module-4	
7	a. Explain structure of VHDL program. Write VHDL code for 4 bit parallel adder	using full
	adder as component.	(08 Marks)
	b. Explain the working of SR latch using NOR gates.	(06 Marks) (06 Marks)
	c. Explain edge triggered D flip flop.	(00 Marks)
	OR	
8	a. Explain J-K Master slave flip flop with suitable timing diagram.	(10 Marks)
O	b. Derive the characteristics equations for D, T, SR and JK flip flops.	(10 Marks)
	o. Benve die chimateria	
	Module-5	
9	a. What is shift register? Explain the works of 8-bit SISO using SR flip flop w	ith Timing
	diagram.	(10 Marks)
	b. With a block diagram explain the working of n bit parallel adder with accumulator	(10 Marks)
		(=======)
	OR	
10	a. Explain Three bit binary ripple counter with relevant waveforms and truth table.	(10 Marks)
	b. Design a random counter using T flip flop for the following sequence:	
	000, 100, 111, 010, 011,	(10 Marks)
	4 ***** 0.0	
	2 of 2	
	Z.	