61923

Reg. No.	_			
Keg. 140.		•		

Maximum Marks: 70

III Semester M.Sc. Degree Examination, April/May - 2022 CHEMISTRY

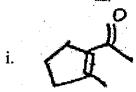
Organic Spectroscopy (CBCS Scheme 2019-2020) Paper: CH - 303 IC/OC/PC

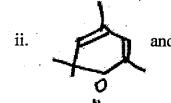
Time: 3 Hours

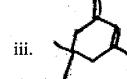
Instructions to Candidates:

1. Answer question No. 1 and any five of the remaining

2. Figures to the right indicate marks.

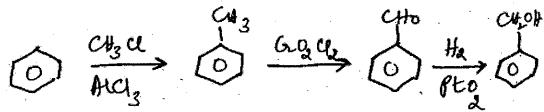

Answer any **Ten** of the following. $(10\times2=20)$


- a. Sketch the MO diagram of benzene. Name and indicate the positions, of its UV bands.
- b. Oultine the Nujol mull technique for recording IR spectra.
- c. Carbonyl compounds are sensitive to changes of solvent in UV/IR spectra why?
- d. Indicate why TMS is the internal standard of choice in ¹H NMR spectroscopy.
- e. Assign pople's notation for the following spin systems:
 - i. CH,CHO and


- f. How are first order ¹H NMR speactra differentiated from higher order ¹H NMR spectra?
- g. State and explain Audier Stevenson rule.
- h. Deduce the expression for separation of ions in an ICR MS instrument.
- i. Illustrate NOE with suitable example.
- j. How are the formation of free radical intermediates recognized by dynamic ¹H NMR spectroscopy?
- k. Give the composition of a matrix. Highlight its importance in the MALDI technique for formation of molecular ions.

$$R-CH_2-C-O-CH_2-CH_2-R$$
(A) (B) (C)

- i. δ:68.9
- ii. δ : 26.4 and
- iii. δ : 22.7 ppm.
- 2. a. Outline the empirical rules to predict the λ_{max} of aromatic carbonyl compounds.
 - b. Illustrate the usefulness of IR spectroscopy to distinguish the isomers 2-hydroxybenzaldehyde from 4-hydroxybenzaldehyde.
 - c. Predict the λ_{max} for the following.



(4+3+3=10)

3. a. Predict the prominent IR bands in the following sequence of transformations:

- b. Write an account of the complementarities of IR and Raman spectroscopies.
- c. Expalin the phenomena of NMR on the basis of quantum mechanical theory.

(4+3+3=10)

- 4. a. Give an account of the principle and instrumentation of an 7T-NMR instrument.
 - b. Write the karplus equation. Sketch the karplus curve and indicate its importance.

c. Deduce the structure of an organic compound from the following data:

Mol. form: C₆H₁₂O₂.

¹H NMR: δ : 2.00 (s,2H), 0.84 (s, 9H), and 11.01 (s, 1H).

¹³C NMR : δ : 179.4, 48.2, 29.8 and 28.2.

(4+3+3=10)

61923

- 5. a. Discuss any two methods for the simplification of complex NMR spectra.
 - b. With the help of a neat diagram, indicate the anisotropic effects prevalent in alkenes.
 - c. A compound has molecular formula $C_{10}H_{14}$ and gave the following data:

¹HNMR: δ : 7.01 (s, 1H) and 2.20 (s, 6H).

¹³<u>C NMR</u>: δ : 133.0, 130.2 and 19.2

Deduce the structure of the molecule and assign the values.

(4+3+3=10)

- 6. a. State and explain the first order splitting rules of ¹H NMR.
 - b. Citing suitable examples, illustrate the usefulness of DEPT.
 - c. Indicate the importance of nitrogen rule with suitable examples. (4+3+3=10)
- 7. a. Describe the quasi equilibrium theory.
 - b. Write an account of the application of HRMS to determine the exact molecule formula of an organic compound.
 - c. Deduce the structure of an organic compound from the following data:

Mol. form : $C_{10}H_{12}O$

IR: 3019, 2987, 1718 and 1049 cm-1

¹<u>HNMR</u>: δ : 7.30 to 7.19 (m, 5H), 2.85(t, 2H, J = 7Hz)

2.50 (t, 2H, J = 7 Hz) and

2.12 (s, 3H).

 13 CNMR: δ : 207.2, 141.8, 128.6, 126.7, 124.3, 45.0, 29.3 and 27.8.

MS: 148 and 91 (base peak).

(3+3+4=10)

8. a. A compound has molecular formula $C_9H_6O_6$ and gave the following data:

ATR - IR: 3500 - 2000, 1710 and 1259 cm⁻¹.

 ${}^{1}H NMR : \delta : 13.01 (s) \text{ and } 8.76 (s)$

¹³CNMR: δ: 165.9, 133.6, 132.0

MS: 210 (M+) and 192 (base peak)

Deduce the structure of the compound and assign the values.

- b. Write short notes on:
 - i. ¹⁹F NMR spectroscopy.
 - ii. INADEQUATE.
 - iii. ESI-MS.

(4+6=10)