

60777

 $(10 \times 2 = 20)$

Reg. No.				

III Semester M.Sc. Degree Examination, April/May - 2022 **CHEMISTRY**

Organic Spectroscopy

Paper - 303 OC (CBCS Scheme Repeaters 2014-15)

Maximum Marks: 70

Time: 3 Hours

Answer any TEN of the following:

Name the most common solvent used to record UV-Visible spectra free reasons for its use.

- Define chromophore. Give its relation to an auxochrome
- Write the mathematical equation of Beer-lambert law and elaborate the terms.
- Sketch the karplus curve and highlight its importance.
- Give reasons why TMS is used as an internal standard in NMR spectroscopy.
- Mention the two relaxation methods encountered in NMR spectroscopy.
- Reason why benzene gives only one signal at δ : 7.33 pm in its 'H NMR Spectrum
- Draw the low- and high-resolution 'H NMR of ethanol.
- How is the formation of carbocation recognized by 13 C NMR spectroscopy?
- Illustrate the Nitrogen rule with suitable example.
- Highlight the importance of base peak in EI-MS.
- Indicate any one method to identify the molecular ion peak in a mass spectrum.
- Outline Scott's rules to predict the λ_{max} of aromatic carbonyl compounds. 2. a)
 - Discuss sample handling techniques of R Spectroscopy. (5+5=10)
- Highlight the complementadity of |R- and Raman-spectroscopies. 3.
 - Illustrate the advantages of FT-NMR technique over CW-NMR.

[P.T.O.

(2)

60777

c) A compound has molecular formula C_7H_8 . It gave two signals in its 'HNMR at $\delta: 7.3\text{-}7.2 \text{ (m,5H)}$ and 2.34 ppm (S, 3H) Deduce the 'structure of the molecule.

(4+3+3=10)

- 4. a) With the help of a neat diagram, discuss the instrumentation and working of a double been EI-MS instrument.
 - b) Sketch the table of chemical shifts for various carbon environments encountered in ¹³C NMR spectroscopy. (6+4=10)
- 5. a) Describe the following methods of ionization and indicate their usefulness:
 - (i) FAB-

and (ii) MALDI-Tof

b) Write a note on HRMS

(6+4=10)

)

6. a) Predict the λ_{max} for the following compounds:

- b) What are fermi-resonance bands? How are they formed? Give their usefulness.
- c) Discuss any two methods for the simplification of complex 'H NMR spectra

(4+3+3=10)

- 7. a) State and explain the first-order splitting rules of ¹H NMR spectroscopy.
 - b) A compound gave the following data:

Mol. formula C₉ H₁₀O

 \underline{UV} : 260 nm

<u>1R</u>: 3018, 2978, 1715 and 960 cm⁻¹

¹H-NMR: δ : 7.27 (m, 5H), 3.61 (S, 2H)

and 2.10 (S, 3H) ppm

¹³CNMR: δ: 206.1, 134.5, 130.1, 128.2,

126.7, 50.1 and 30.2 ppm

MS:

134 (M⁺) and 91 (base peak)

Deduce the structure of the molecule and assign the values.

(4+6=10)

(3)

60777

- 3. Write short notes on:
 - a) DEPT
 - b) Mclafferty rearrangement
 - c) NMR of compounds possessing 19F and ³¹P Nuclei.

(4+3+3=10)