
ADAQ QAITEME

/a	USN	THE	18MT72
HA	(1	1600	
X	(Vale	*****	Seventh Semester B.E. Degree Examination, June/July 2023
10	2		Thermal Engineering
1	Tin	ner (Max. Marks: 100
	Λ	Inte:	1. Heat transfer handbook is permitted.
15	1 4		2. Answer any FIVE full questions, choosing ONE full question from each module.
cnce			Module-1
ou, will be treated as maipractic	1	a.	Define the following: i) Thermodynamic ii) System iii) Boundary iv) Surrounding v) Universe. (10 Marks)
ed as		b.	Explain difference between Micro and Macroscopic approach. (05 Marks)
rear		C.	Explain difference between heat and work. (05 Marks)
20 1			OR
50, WII	2	a.	Explain following types of work transfer: i) Shaft work ii) Electrical work iii) Stirring work iv) Work done is stretching a wire. (10 Marks)
0		b.	The reading t _A and t _B two Celsius thermometers A and B agree at the Ice point and steam
171			point and are related by the equation $t_A = L + M \cdot t_B + N \cdot t_B^2$ between these two points L,M,N
n eg			are constants. When both are immersed in an oil bath thermometer. 'A' Indicates 55°C and
ulle			thermometer 'B' indicates 50°C. Determine the values of L, M, N and also find the reading
M SII			on 'A' if 'B' reads 25°C. (10 Marks)
Jano	3	0	Explain approxis a property of system
ibə i	3	a. b.	Explain energy is a property of system. (10 Marks) Derive the expression for heat transfer per unit mass for reversible polytropic process taking
) pi			place in closed system. (10 Marks)
101 21			OR
evaluator and /or equations written eg	4	a.	Define the following: i) Heat pump ii) Refrigerator iii) Thermal efficiency
20		1.	iv) Co-efficient of performance. (06 Marks)
Seal		c.	Prove that $(COP)_{HP} = 1 + (COP)_{ref}$. (06 Marks) A heat engine working on carnot cycle converts one-fifth of the heat input into work. When
ı, ap		٠.	the sink temperature is reduced by 70°C, the heat engine efficiency gets doubled. Determine
allor			temperature of source and sink. (08 Marks)
			Module-3
z. Any reveanng or neenuncanon, appea	5	a.	Explain carnot cycle with P-V and T-S diagram. Derive an expression for its efficiency. (10 Marks)
gum		b.	Explain diesel cycle with P-V and T-S diagram. Derive an expression for its mean effective
۳ × دع			pressure. (10 Marks)
I (III)	(OR
7.7	6	a. b.	Define heat transfer and explain modes of heat transfer. (10 Marks) A surface having an area of 1.5m ² and maintained at 300°C exchanges heat by radiation with
		0.	another surface at 40°C. The value of factor due to the geometric location and emissivity is
			0.52. Determine:
			i) Heat lost by radiation.
			ii) The value of thermal resistance
			iii) The value of equivalent convection coefficient. (10 Marks)

Module-4

- 7 a. Derive the 3-D conduction equation in Cartesian coordinates and reduce the equation to Fourier's and Laplace equivalent. (10 Marks)
 - b. A reactors wall 320mm thick is made up of an Inner layer of five brick (K = 0.84w/mic) covered with a layer of Insulation (K = 0.16W/mic). The reactor operates at a temperature of 1325°C and the ambient temperature is 25°C.
 - i) Determine the thickness of fire brick and insulation which gives minimum heat loss.
 - ii) Calculate the heat loss pressuring that the insulating material has a maximum temperature of 1200°C. (10 Marks)

OF

- 8 a. Using dimensional analysis for free convection heat transfer show that $N_u = C(G_r^n, P_r^m)$ with usual notations. (10 Marks)
 - b. Explain with neat sketch heat transfer in vertical and horizontal flat plates. (10 Marks)

Module-5

- 9 a. Using Buckingham π theorem for forced convection heat transfer show that, $N_u = C\left(R_e^n.P_r^m\right)$ with usual notations. (10 Marks)
 - b. Explain physical significance of following:
 - i) Reynolds number
 - ii) Prandtl number
 - iii) Nussult number
 - iv) Stanton number.

(10 Marks)

OR

- 10 a. State and explain the following radiation laws
 - i) Planks law
 - ii) Wien's displacement law
 - iii) Stefan-Boltzman law
 - iv) Kirchoff's law.

(10 Marks)

- b. An industrial furnace in the form of black body emits radiation at 3000K. Calculate the following:
 - i) Monochromatic Emissive power at 1µm wave length.
 - ii) Maximum emissive power.
 - iii) Total emissive power.
 - iv) Compare the total emissive power of the furnace. If it is assumed as a real surface having emissivity 0.8
 - v) Wave length at which emission is maximum.

(10 Marks)

* * * * *