

Seventh Semester B.E. Degree Examination, June/July 2023 Digital Signal Processing

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. Compute the DFT of the following sequences
 - i) $x(n) = \delta(n n_0)$
 - ii) $x(n) = a^n = u(n)$,

$$0 \le n \le N - 1$$

iii)
$$x(n) = 4 + \cos^2 \frac{4\pi n}{N}, \quad 0 \le n \le N - 1$$

(12 Marks)

- b. Let x(n) be a finite length sequence an $x(n) = \begin{cases} 1, 1, 0, 1, 0 \\ \uparrow \end{cases}$. Find the 5 point DFT of the sequence x(n) and also find y(n) if $y(k) = x^2(k)$.
- 2 a. State and prove circular convolution property of DFT.

(08 Marks)

b. Using real and even property obtain the DFT of {0, 0, 5, 1, 0.5, 0}

(08 Marks)

- c. If $x(n) = \{1, 2, 0, 3, -2, 4, 7, 5\}$ evaluate the following:
 - i) x(4)

ii)
$$\sum_{k=0}^{7} |x(k)|^2$$

(04 Marks)

a. A long sequence x(n) is filtered through a filter with impulse response h(n) to yield the output y(n). If

 $x(n) = \{1, 1, 1, 1, 1, 3, 1, 1, 4, 2, 1, 1, 3, 1\}$

 $h(n) = \{1, -1\}$, compute y(n) using overlap save technique. Use only 5-point circular convolution. (10 Marks)

- b. Develop the Radix 2 D.I.F-FFT algorithm for N-8. Draw the signal flow graph. (10 Marks)
- 4 a. Develop the DIF FFT algorithm to compute DFT for N = 8. Write all intermediate signal How graphs? (12 Marks)
 - b. Consider a finite length sequence $x(n) \begin{cases} 5, 3-j2, -3, 3+j2 \\ \uparrow \end{cases}$, find x(2) using Goertzel

algorithm. Assume that initial conditions are zero.

(08 Marks)

PART - B

5 a. Derive the order of the Butterworth filter.

(06 Marks)

b. Distinguish between Butterworth and Chebyshev filter.

(04 Marks)

c. Design a Chebyshev analog low pass filter has -3dB cut off frequency of 100 rad/sec and a stop band attenuation of 25dB or greater for all radian frequencies past 250 rad/sec.

(10 Marks)

10MT74

- 6 a. Realize an FIR linear phase filter for 'N' to be even. (08 Marks)
 - b. A low pass filter is to be designed with the following desired frequency response:

$$H_{d}(e^{j\omega}) = H_{d}(\omega) = \begin{cases} e^{-j2\omega} & |\omega| < \frac{\pi}{4} \\ 0 & \frac{\pi}{4} < |\omega| < \pi \end{cases}.$$

Determine the filter coefficients $h_d(n)$ and h(n) if $\omega(n)$ is rectangular window defined as,

$$\omega_{R}(n) = \begin{cases} 1 & 0 \le n \le 4 \\ 0 & \text{Otherwise} \end{cases}$$
 (12 Marks)

7 a. Design a Digital Butterworth Low pass filter to meet the following specifications

$$0.8 \le \left| H(e^{jw}) \right| \le 1$$
 for $0 \le w \le \frac{\pi}{4}$ $\left| H(e^{jw}) \right| \le 0.18$ for $0.75\pi \le w < \pi$

Use Bilinear transformation method.

(14 Marks)

b. Determine system transfer function H(z) using impulse invariance technique for the analog system is

$$H(s) = \frac{s+4}{(s+1)(s+3)}$$
. Assume T = 1 Sec. (06 Marks)

8 a. Obtain H(z) using impulse invariance method for following analog filter

$$H_a(s) = \frac{1}{(s+0.5)(s^2+0.5s+2)}$$
 (10 Marks)

- b. Obtain the digital filter equivalent of the analog filter shown in Fig. Q8(b) using
 - i) Impulse invariant transformation
 - ii) Bilinear transformation.

Assuming the sampling frequency $F_s = 8F_c$, where F_c is the cutoff frequency of filter.

