Seventh Semester B.E. Degree Examination, June/July 2023

## **Industrial Drives and Applications**

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

## PART - A

1 a. Mention the advantages of Electric drives.

(07 Marks)

- b. What is steady state stability in the drive system? Derive the required condition for stability.

  (08 Marks)
- c. A motor equipped with a flywheel has to supply a load torque of 600 N-m for 10 sec followed by a no load period long enough for the flywheel to regain its full speed. The motor torque is limited to 450 N-m. What should be the moment of inertia of the flywheel? The no load speed of the motor is 600 rpm and it has a slip of 8% at torque of 400 N-m. Assume the motor speed-torque characteristic to be a straight line in the range of operation. Motor has an inertia of 10 kg-m<sup>2</sup>. (05 Marks)
- 2 a. Explain the method of determination of motor rating for short time duty loads. Also mention the constraints 'K' is subjected. (07 Marks)
  - b. What are the disadvantages of using a motor of wrong rating?

(06 Marks)

- c. A motor has a continuous rating of 100 KW. The heating and cooling time constants are 50 and 70 min respectively. The motor has a maximum efficiency at 80% full load and is employed in an intermittent periodic load cycle consisting of a load period of 10 min followed by a no load period of 10 min. Calculate the value of the load in KW during the load period.

  (07 Marks)
- 3 a. Obtain the transient analysis of starting of a separately excited motor with armature control.
  (10 Marks)
  - b. A 220 V, 970 rpm, 100 A dc separately excited motor has an armature resistance of 0.1  $\Omega$ . It is braked by plugging from an initial speed of 1000 rpm. Calculate:
    - (i) Resistance to be placed in the armature circuit to limit braking current to twice the full load value
    - (ii) Braking Torque

(05 Marks)

- c. A 220V, 1500 rpm, 10A separately excited dc motor is fed from a single-phase fully controlled rectifier with an ac source voltage of 230 V, 50Hz. Armature resistance =  $2\Omega$ . Conduction can be assumed to be continuous. Calculate firing angle for half the rated motor torque at the speed is 500 rpm. (05 Marks)
- 4 a. Explain the operation of four quadrant dc drives employing non circulating and circulating current dual converters. (09 Marks)
  - b. Explain regenerative braking of a separately excited DC motor using chopper control.

(06 Marks)

c. A 220V, 1500 rpm, 50 A separately excited motor with armature resistance of 1 Ω is fed from a 3 phase fully controlled rectifier. Available ac source has a line voltage of 440 V, 50 Hz. Determine the value of firing angle when motor is running at -800 rpm and twice the rated torque. A star delta connected transformer is used to feed the armature so that motor terminal voltage equals rated voltage when converter firing angle is zero. (05 Marks)

## PART - B

5 a. Explain the effect of unbalanced rotor impedances on the induction motor performance.

(06 Marks)

- b. Explain AC dynamic braking with two lead connection of a wound rotor induction motor with neat diagram.

  (08 Marks)
- c. A 2200 V, 50 Hz, 3-phase, 6-pole, Y-connected, squirrel cage induction motor has following parameters:  $R_s = 0.055 \Omega$ ,  $R'_r = 0.12 \Omega$ ,  $X_s = X'_r = 0.5 \Omega$ . The combined inertia of motor and load is 100 kg-m<sup>2</sup>. Calculate time taken and energy dissipated in the motor during starting.
- 6 a. Explain the operating of VSI fed induction motor drives.

(06 Marks)

- b. Explain with the neat block diagram, the operation of current regulated voltage source inverter control. (07 Marks)
- c. A 2.8 KW, 400 V, 50 Hz, 4 pole, 1370 rpm, delta connected squirrel-cage induction motor has following parameters referred to the stator:  $R_S = 2 \Omega$ ,  $R'_r = 5 \Omega$ ,  $\alpha_S = X'_r = 5 \Omega$ ,  $X_m = 80 \Omega$ . Motor speed is controlled by stator voltage control. When driving a fan load it runs at rated speed at rated voltage. Calculate motor terminal voltage and torque at 1200 rpm.
- 7 a. Why regenerative braking cannot be used for stopping or decelerating a load with an equivalent circuit? Explain dynamic braking of synchronous motor. (06 Marks)
  - b. With the block diagram, explain closed-loop speed control of load commutated inverter synchronous motor drive.

    (06 Marks)
  - c. A 3 MW, 3 phase, 11 KV, Y connected, 6 pole, 50 Hz, 0.8 (leading) power factor synchronous motor has  $X_S = 9 \Omega$  and  $R_S = 0$ . Rated field current is 50 A. Machine is controlled by variable frequency control at constant (v/f) ratio up to the base speed and at constant v above base speed. Determine torque and field current for regenerative braking operation at rated armature current, 1500 rpm and unity power factor. (08 Marks)
- 8 a. What are the requirements of paper machine drive?

(07 Marks)

- b. Discuss about the type of motors used for different textile processes. (07 Marks)
- c. What is the process followed in continuous hot rolling mills and reversing cold rolling mills.

(06 Marks)

\* \* \* \*