Seventh Semester B.E. Degree Examination, June/July 2023

Cryptography

Time: 3 hrs

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Give and explain the 3 independent dimensions of Cryptographic Systems. (06 Marks)
 - A message received at an Australian wireless station in play fair code: KXJEY UREBE key used was ROYAL NEW ZEALAND NAVY. Decrypt the message. (08 Marks)
 - c. In the One time pad version of a Vignere Cipher, Key stream is 9 0 1 7 23 15 21 14 11 11 2 8 9. In this scheme, encryption is done by shifting with number mentioned in the key. Encrypt the plain text sendmoremoney and using the Cipher text obtained, find a key such (06 Marks) that Cipher text decrypts to cashnotneeded.

OR

- Differentiate Confusion and Diffusion. With a structure, explain the working of Fiestel 2 (07 Marks) Encryption and Decryption.
 - Encrypt the message "MAM" using Hill cipher with key

$$A = \begin{bmatrix} 6 & 24 & 1 \\ 13 & 16 & 10 \\ 20 & 17 & 15 \end{bmatrix}$$

Further show the calculations for corresponding decryption of Cipher text to recover plain

c. Given data - 208 amd IP = [4 1 8 2 3 5 6 7] (IP means Initial Permutation). Find the (05 Marks) permutation of the data and its inverse.

Module-2

- Differentiate Public Key Encryption and Conventional Encryption. Classify and explain (06 Marks) Public Key Cryptosystems.
 - b. In a Public key system using RSA, you intercept the ciphertext C = 10 sent to a user where n = 221. What is the plaintext.
 - c. "Diffie Hellman key exchange is vulnerable to Man in The middle attack". Substantiate with a sequence diagram.

OR

- Design Public key encryption system for secrecy and Authentication separately. (06 Marks)
 - Consider a Diffie Hellman scheme with common prime, q = 11 and primitive root $\alpha = 2$.
 - Show that 2 is a primitive root of 11.

 - ii) If user has public key Y_A = 9, what is A's private key X_A.
 iii) If user B has public key Y_B = 3, what is secret key K shared with A. (07 Marks)
 - c. Consider an Elgamal scheme with common prime q = 71 and primitive root $\alpha = 7$. If B has public key $Y_B = 3$ and A choose random integer K = 2, what is Cipher text of M = 301. If A now chooses different value of K, so that encoding of M = 30 is $C = (59, C_2)$ what is C_2 ? (07 Marks)

Module-3

- 5 a. Give the Geometric and Algebraic description of Addition on Elliptic curves over real number. (07 Marks)
 - b. Prove that elliptic curve equation $y^2 = x^3 + 10x + 5$ does not define group over Z_{17} . Consider elliptic curve E_{11} (1, 6) defined by $y^2 = x^3 + x + 6$ with modulus = 11. Determine all points in E_{11} (1, 6).
 - c. Cryptosystem parameters $E_{11}(1, 6)$ and G = (2, 7). B's private key $n_B = 3$. Find B's Public key P_B . (04 Marks)

OR

- 6 a. Explain the working of Micali Schnorr Pseudorandom Bit Generator. (06 Marks)
 - b. Define Control Vector. Explain the Coupling and Decoupling process with control vector.
 (07 Marks)
 - c. Consider an elliptic curve over $GF(2^4)$ with irreducible polynomial $f(x) = x^4 + x + 1$. Develop power of g, (generator with $g^4 = g + 1$) and check whether point (g^6, g^8) exists in this curve with equation $y^2 + xy = x^3 + g^4 x^2 + 1$. (07 Marks)

Module-4

- 7 a. Write and explain general format of $\overline{X.509}$ certificate. (08 Marks)
 - b. With a figure, bring out the relationship among keyelements of PKIX model. (07 Marks)
 - c. With a sequence diagram, illustrate the Kerberos exchanges among the parties. (05 Marks)

OR

- 8 a. Consider one way authentication technique based on asymmetric encryption: $A \rightarrow B$: IDA $B \rightarrow A$: E(PVa, R₂) $A \rightarrow B$: R₂. Explain the protocol and what type of attack this protocol is susceptible to? (05 Marks)
 - b. "PGP has grown explosively and is widely used". Enlist the reasons coated for this growth.

 (05 Marks)
 - c. Summarize the different cryptographic algorithms used in S/MIME with its function and requirement. Explain the motivating factors of DKIM and also illustrate deployment of DKIM with a simple example. (10 Marks)

Module-5

- 9 a. Depict and explain IPSec Architecture. Explain the parameters required for Security Association. (10 Marks)
 - b. Write the top level format of an ESP packet and explain the fields. Differentiate Transport and Tunnel mode of Encryption. (10 Marks)

OR

- 10 Write short notes on:
 - a. Protocol Operation for ESP.
 - b. Basic Combinations of Security Associations.
 - c. Features of key Determination in IKE.
 - d. Cryptographic suites.

(20 Marks)

* * * * *