

18CS741

Seventh Semester B.E. Degree Examination, June/July 2023 **Digital Image Processing**

1 111	10. 5	Max. M	arks: 100						
	N_0	ote: Answer any FIVE full questions, choosing ONE full question from each mod	dule.						
1		Module-1							
	a.	Define an image. With block diagram, explain the fundamental steps in dig							
	b.	processing. Explain 4 connectivity 8 connectivity and mean activity with suitable assemble.	(12 Marks)						
	υ.	Explain 4-connectivity, 8-connectivity and m-connectivity with suitable example. (08 Marks)							
		With necessary discussions discussions discussions	*******						
	a. b.	With necessary diagrams, discuss image digitization process. Discuss any four applications of digital image processing.	(10 Marks)						
	υ.	Discuss any four applications of digital image processing.	(10 Marks)						
	_	Module-2							
	a.	Define histogram equalization. Develop an algorithm to enhance image quality method.							
	b.	Discuss any three gray level transformation techniques with suitable graph plots.	(12 Marks)						
	υ.	Discuss any timee gray revertiansformation techniques with suitable graph piots.	(08 Marks)						
		OR							
	a.	Explain the importance of Sobel and Prewitt operators in image processing.	(08 Marks)						
	b.	Discuss Laplacian and Log Edge detectors with suitable mathematical model.	(12 Marks)						
5		Module-3							
	a.	List the properties of DFT. Explain Discrete Fourier Transform Process alon							
	b.	Computational complexity. Discuss steps in frequency domain based filtering techniques.	(12 Marks)						
	υ.	Discuss steps in frequency domain based intering techniques.	(08 Marks)						
	- 400	OR							
6		Discuss the filters used to smooth an image in frequency domain.	(10 Marks)						
	D.	Explain the significance of homomorphic filters with a block diagram.	(10 Marks)						
,		Module-4							
	a.	Define image segmentation. What are the properties of segmentation?	(10 Marks)						
	b.	Explain 'Region Growing' and 'Split and Merge' approach used in image segmen							
			(10 Marks)						
		OR							
3	a.	Explain how Hough Transform helps in extracting line segments from an image.	(10 Marks)						

b. Define thresholding. Explain Global thresholding technique with an example. (10 Marks)

Module-5

9 a. Define image compression. Explain general image compression model with a block diagram. (10 Marks)

b. Develop an algorithm that encodes data using Huffman coding technique. Illustrate Huffman coding for the following data:

Data	S_1	S_2	S_3	S ₄	S_5	VS_6
Probability	0.1	0.4	0.06	0.1	0.04	0.3

(10 Marks)

OR

10 a. Discuss LZW encoding and decoding technique with an example.

(12 Marks)

b. With a block, discuss transform coding technique.

(08 Marks)