

Mathematics – I for Computer Science Engineering
Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	С
Q.1	a.	With usual notations, prove that $\tan \phi = r \frac{d\theta}{d\gamma}$.	6	L2	CO1
		Find the angle of intersection between the curves $\gamma = \frac{a\theta}{1+\theta}$, $\gamma = \frac{a}{1+\theta^2}$.	_	1.2	CO1
	b.	Find the angle of intersection between the curves $\gamma = \frac{1}{1+\theta}$, $\gamma = \frac{1}{1+\theta^2}$.	7	L2	CO1
	c.	Find radius of curvature of the curve $y = a \log \sec \left(\frac{x}{a}\right)$ at any point (x, y) .	7	L2	CO1
		OR			
Q.2	a.	With usual notations prove that $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$.	8	L2	CO1
	b.	Find the radius of the curvature of the curve $r = a(1 + \cos\theta)$.	7	L2	CO1
	c.	Using modern mathematical tool write a program/code to plot the Sine and Cosine curve.	5	L3	CO5
		Module – 2			1
Q.3	a.	Using Maclaurin's series prove that $\sqrt{1+\sin 2x} = 1+x-\frac{x^2}{2!}-\frac{x^3}{3!}+\frac{x^4}{4!}+\dots$	6	L2	CO1
	b.	If $Z = e^{ax+by}$ f(ax-by), prove that $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz$.	7	L2	CO1
	c.	Find the extreme values of the function $f(x, y) = x^3 + y^3 - 3x - 12y + 20$.	7	L3	COI
		OR			<u></u>
Q.4	a.	Evaluate $\lim_{x \to 0} \left(\frac{a^x + b^x + c^x + d^x}{4} \right)^{\frac{1}{x}}$.	8	L2	COI
	b.	If $u = \frac{2yz}{x}$, $v = \frac{3xz}{y}$, $w = \frac{4xy}{z}$ find $J\left(\frac{u, v, w}{x, y, z}\right)$.	7	L2	CO

	c.	Using modern mathematical tool write a program code to evaluate	5	L3	CO5
		$\begin{array}{c} \operatorname{Lt} \\ x \to \infty \left(1 + \frac{1}{x} \right)^x . \end{array}$			
		Module – 3			
Q.5	a.	Solve $\frac{dy}{dx} + y \tan x = y^3 \sec x$.	6	L2	CO2
	b.	Find orthogonal trajectories of family of curves $r^n = a^n \cos n\theta$.	7	L3	CO2
	c.	Solve $x^2p^2 + 3xyp + 2y^2 = 0$.	7	L2	CO2
		OR			
Q.6	a.	Solve $(x^2 + y^2 + x)dx + xydy = 0.$	6	L2	CO2
	b.	Find the general solution of the equation $(px - y)(py + x) = 2p$ by reducing into Clairaut's form by taking the substitution $X = x^2$, $Y = y^2$.	7	L2	CO2
	c.	A 12 volts battery is connected to a series circuit in which the inductance is $\frac{1}{2}$ Henry and resistance is 10 ohms. Determine current I, if the initial current is zero.	7	L3	CO2
		Module – 4			
Q.7	a.	 i) Find the last digit in 13³⁷. ii) Find the remainder when 7¹¹⁸ is divided by 10. 	6	L2	CO3
	b.	Find the solutions of the linear congruence $12x \equiv 6 \pmod{21}$.	7	L2	CO3
	c.	Find the general solution of linear Dio-phantine equation $70x + 112y = 168$.	7	L2	CO3
		OR			
Q.8	a.	Find the remainder when 14! Is divided by 17.	6	L2	CO3
	b.	Find the solution of system of linear congruences $7x + 3y \equiv 10 \pmod{16}$ $2x + 5y \equiv 9 \pmod{16}$	7	L2	CO3
	c.	Solve $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{6}$, $x \equiv 4 \pmod{7}$ using Chinese remainder theorem.	7	L3	CO3
		Module – 5	1		1
Q.9	a.	Find the rank of matrix $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$.	6	L2	CO4

	b.	Solve the system of equations by Gauss-Jordan method. x + y + z = 9; $2x + y - z = 0$; $2x + 5y + 7z = 52$.	7	L3	CO4
	c.	Find the largest eigen value and the corresponding eigen vector of the matrix $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ taking $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ as initial eigen vector, using			
		power method.	7	L3	CO4
		OR			
Q.10	a.	Find the values of λ and μ for which the system			
		$x + y + z = 6$; $x + 2y + 3z = 10$; $x + 2y + \lambda z = \mu$ has i) Unique solution ii) Infinitely many solutions iii) no solution.	8	L2	CO4
	b.	Solve the following system of equations by Gauss-Elimination method $2x + y + 4z = 12$, $4x + 11y - z = 33$, $8x - 3y + 2z = 20$.	7	L3	CO4
	c.	Using modern mathematical tool, write a program/code to test the consistency of the equations $x + 2y - z = 1$, $2x + y + 4z = 2$, $3x + 3y + 4z = 1$.	5	L3	CO5