

CBCS SCHEME

17MAT11

First Semester B.E. Degree Examination, Jan./Feb. 2023 Engineering Mathematics – I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Obtain the nth derivative of

$$\frac{x}{(1+x)(1+2x)} \tag{06 Marks}$$

b. Prove that the curves $r = a \sec^2 \theta/2$ and $r = a \csc^2 \theta/2$ cut orthogonally. (07 Marks)

c. Find the radius of curvature at the point $(\frac{3}{2}, \frac{3}{2})$ on the curve $x^3 + y^3 = 3xy$. (07 Marks)

OR

2 a. If
$$y = e^{a \sin^{-1} x}$$
, then prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n = 0$. (06 Marks)

b. Prove that with usual notation,
$$\tan \phi = r \frac{d\theta}{dr}$$
 (07 Marks)

c. Find the pedal equation of the curve
$$\frac{2a}{r} = (1 - \cos \theta)$$
 (07 Marks)

Module-2

3 a. If
$$u = \sin^{-1}\left(\frac{x^3 + y^3}{x + y}\right)$$
, prove that $xu_x + yu_y = 2 \tan u$ (06 Marks)

b. Obtain Taylor's series expansion of log(cos x) about the point $x = \pi/3$ upto the fourth degree term. (07 Marks)

c. If
$$u = x + 3y^2 - z^3$$
; $v = 4x^2yz$; $w = 2z^2 - xy$ then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $(1, -1, 0)$. (07 Marks)

OR

4 a. Evaluate
$$\lim_{x\to 0} \left[\frac{\sin^2 x - x^2}{x^2 \sin^2 x} \right]$$
 (06 Marks)

b. Expand log(1 + sinx) in power of x by Maclaurin's expansion upto the term containing x^3 .

(07 Marks)

c. If
$$u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$$
 prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$ (07 Marks)

Module-3

- 5 a. A particle moves along the curve whose parametric equation are $x = t^3 + 1$, $y = t^2$, z = 2t + 5 where t is the time. Find the components of velocity and acceleration at t = 1 in the direction of $\hat{i} + \hat{j} + 3\hat{k}$.
 - b. A vector field is given by $\vec{F} = (x^2 y^2 + x)\hat{i} (2xy + y)\hat{j}$. Show that the field is irrotational and find its scalar potential such that $\vec{F} = \nabla \phi$. (10 Marks)

OR

6 a. If $\vec{F} = (x + y + 1)\vec{i} + \vec{j} - (x + y)\vec{k}$, show that $\vec{F} \cdot \text{curl } \vec{F} = 0$ (06 Marks)

b. Show that $\vec{F} = \frac{x \hat{i} + y \hat{j}}{x^2 + y^2}$ is both solenoidal and irrotational. (07 Marks)

c. Show that $\operatorname{div}(\operatorname{curl}\vec{F}) = 0$ (07 Marks)

Module-4

7 a. Obtain the reduction formula for $\int \cos^n x \, dx$ where n is a positive integer hence evaluate

$$\int_{0}^{\pi/2} \cos^{n} x \, dx \tag{06 Marks}$$

b. Solve y(2x - y + 1) + x(3x - 4y + 3)dy = 0 (07 Marks)

c. Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$ where λ is the parameter. (07 Marks)

OR

8 a. Evaluate $\int_{0}^{a} x \sqrt{ax - xz} dx$. (06 Marks)

b. Solve $x^3 \frac{dy}{dx} - x^2 y = -y^4 \cos x$. (07 Marks)

c. If the air is maintained at 30°C and the temperature of the body cools from 80°C to 60°C in 12 minutes. Find the temperature of the body after 24 minutes. (07 Marks)

Module-5

9 a. Find the rank of a matrix

$$\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$

using elementary row operating.

(06 Marks)

b. Solve the system of equation 2x + 5y + 7z = 52, 2x + y - z = 0, x + y + z = 9 by using Gauss-Jordan method. (07 Marks)

c. Diagnolise the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$. (07 Marks)

OR

10 a. Show that the transformation $y_1 = 2x_1 - 2x_2 - x_3$, $y_2 = -4x_1 + 5x_2 + 3x_3$, $y_3 = x_1 - x_2 - x_3$ is regular, find the inverse transformation. (06 Marks)

b. Using power method, find the dominant eigen value and the corresponding eigen vector of

the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ taking the initial vector as $[1, 0, 0]^T$. Carry out five iterations.

(07 Marks)

c. Reduce the quadratic form $2x_1x_2 + 2x_1x_3 - 2x_2x_3$ into canonical form, by using orthogonal transformation. (07 Marks)