

18AE/AS33

hird Semester B.E. Degree Examination, Jan./Feb. 2023 Mechanics of Materials

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define Stress and derive the stresses on inclined plane for uniaxial loading condition.

(08 Marks)

b. Draw stress-strain curve for the given materials mentioning salient features:

i) Steel

ii) Aluminium

iii) Glass

iv) Rubber

(04 Marks)

c. A point in a strained material is subjected to a tensile stress of 120 N/mm² and compressive stress of 80 N/mm² acting at right angles to each other. Find the normal stress, tangential stress and its obliquity on a plane inclined at an angle 30° with the axis of compressive stress. Also find the maximum shear stress.

(08 Marks)

OR

- 2 a. Define the following:
 - i) Volumetric strain
- ii) Shear strain
- iii) Shear stress
- iv) Poisson's ratio

- v) Young's modulus
- vi) Principal stress

(06 Marks)

b. Derive the elongation in uniform section bar.

- (06 Marks)
- c. Determine the magnitude of the load "P" necessary to produce zero net change in the length of the straight bar shown in Fig.Q2(c). $A = 400 \text{ mm}^2$.

(08 Marks)

Module-2

- a. Discuss types of beams and derive for relation between loads, shear forces and bending moment. (10 Marks)
 - b. Find the reactions at the fixed and draw the SFD and BMD for the cantilever shown in Fig.Q3(b).

(10 Marks)

OR

4 a. Derive the bending equation in beam.

(10 Marks)

b. The cross-section of a beam is shown in Fig.Q4(b), if permissible stress is 150 N/mm², find its moment of resistance. Compare it with equivalent section of the same area for a square section.

(10 Marks)

Module-3

(10 Marks) Show that intensity of load, $\omega =$

Show that deflection in simply supported beam with a point load at centre

$$Y_{c} = \frac{\omega \ell^{3}}{48EI}$$
 (10 Marks)

(10 Marks) ·R in case of shaft.

A solid circular shaft is required to transmit 100 kW at 180 rpm. The permissible shear stress in the shaft is 60 N/mm². Find suitable diameter of the shaft, if the angle of twist is not to exceed 1° in length of 3 meter. The value of modulus of rigidity is $0.8 \times 10^5 \text{ N/mm}^2$.

(10 Marks)

State and prove Castigliano's second theorem. (10 Marks) 7 Write a note on complementary energy and virtual work. (10 Marks)

Derive for the strain energy due to axial force on the bar. (10 Marks)

b. A simply supported beam of span l carries a point load P at mid span. Determine the strain energy stored by the beam. Also find the deflection at mid-span. (10 Marks)

Module-5

(10 Marks) a. Define fracture and explain Type I fracture. (10 Marks) b. Discuss Type II and Type III fractures.

OR

(10 Marks) Define creep with example mentioning the demerits. (10 Marks) Explain the stages of creep with neat stage diagram.