

CBCS SCHEME

18MT645

(10 Marks)

Sixth Semester B.E. Degree Examination, Jan./Feb. 2023 **Computer Integrated Manufacturing**

Tin	ne: 3	hrs.	ax. Marks: 100
	No	te: Answer any FIVE full questions, choosing ONE full question from ea	ch module.
		Module-1	
1	a.	Explain briefly the processing in manufacturing.	(10 Marks)
		Define Automation. Explain the types of Automation.	(10 Marks)
		OR	
2	a.	Explain linear-walking beam transfer mechanism.	(10 Marks)
	b.	What are storage buffers in automated flow lines? Give reasons for using st	orage buffers.
			(10 Marks)
		Module-2	
3		Explain common reasons for down time on an automated production line.	(10 Marks)
		Explain the upper bound approach and lower bound approach in analyz	
		without storage buffer.	(10 Marks)
		OR	
4	a.	A 20 station transfer line is divided into two stages 10 stations each. The i	deal cycle time of
		each stage is $T_c = 1.2$ min. All of the stations in the line have the same	
		stopping, P = 0.005. We assume that the downtime is constant when b	
		$T_d = 8.0$ min. Compute the line efficiency for the following buffer capacities	
	1	(i) $b = 0$ (ii) $b = \infty$ (iii) $b = 10$ (iv) $b = 100$	(12 Marks)
	b.	Give reasons for partial automation. Explain briefly the assumption made of	
		of partial automation.	(08 Marks)
		Module-3	
5	a.	Explain briefly the design for automated assembly.	(12 Marks)
	b.	With a neat sketch, explain In-line assembly system and Rotary assembly s	ystem. (08 Marks)
		OR	, *
6	a.	Define AGV's. Explain any two types of AGV's.	(10 Marks)
	b.	Explain any two common types of vehicle guidance systems in AGV's.	(10 Marks)
		Module-4	
7	a.	Explain the advantages of CAPP.	(10 Marks)
		Briefly explain Generative Process Planning System.	(10 Marks)
		OR	
8	a.	Explain briefly Retrieval CAPP system.	(10 Marks)
~	b.	Explain structure of material requirement planning.	(10 Marks)
		Module-5	
9	a.	Define NC Machines. Explain the advantages.	(10 Marks)
-	1	CONC.	(10.74 1.)

10 a. With a neat sketch, explain horizontal machining center. (10 Marks) b. Briefly explain the steps in part program development. (10 Marks)

b. Briefly explain the advantages of CNC systems.