

USN

17ME34

Third Semester B.E. Degree Examination, Jan./Feb. 2023 Mechanics of Materials

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define the following terms:
 - (i) Strength
- (ii) Stress
- (iii) Ductility
- (iv) Young's modulus.
- (04 Marks)

Derive expression for elongation of uniform bar.

- (04 Marks)
- c. The tensile test was conducted on a mild steel rod and the following observations mode:
 - (i) Diameter of steel rod = 16 mm
 - (ii) Gauge length of rod = 80 mm
 - (iii) Load at proportionality limit = 72 kN
 - (iv) Extension at load of 60 kN = 0.115 mm
 - (v) Load at failure = 80 kN
 - (vi) Final gauge length of rod = 104 mm
 - (vii) Diameter of rod at failure = 12 mm
 - Find: (i) Young's modulus
- (ii) Stress at proportionality limit
- (iii) Percentage elongation

(12 Marks)

OR

2 a. Determine the magnitude of load 'P' necessary to produce zero net change in the length of straight bar. Take $A = 400 \text{ mm}^2$.

Fig. Q2 (a)

(10 Marks)

Derive relationship between Elastic modulus and Modulus of Rigidity.

(10 Marks)

Module-2

- a. Derive expression for normal stress and shear stress on a plane inclined at 'θ' to vertical axis in a state of biaxial stress along with shear stress.
 - b. The state of stress at a point in a strained material is shown in Fig. Q3 (b).

Fig. Q3 (b)

Determine: (i) Principal stress

(ii) Orientation of Principal plane.

(iii) Maximum shear stress

Verify the results using Mohr's circle.

(10 Marks)

OR

- 4 a. Derive expression for hoop stress and longitudinal stress in thin cylinder. (10 Marks)
 - b. A pipe of 500 mm inside diameter and 75 mm thick is filled with a fluid at a pressure of 6 MPa. Find the maximum and minimum hoop stress across the cross section of cylinder. Also sketch the radial pressure and stress distribution across the section. (10 Marks)

Module-3

- 5 a. Classify the beams in detail and also define point of contraflexure in beams. (08 Marks)
 - b. A beam is loaded as shown in Fig. Q5 (b). Plot SFD and BMD.

Fig. Q5 (b)

(12 Marks)

OR

- 6 a. Derive simple bending equation with usual assumptions. (12 Marks)
 - b. A C.I. beam 25mm×25mm cross section and 1 m long, supported at its ends fail when a central load of 800 N is applied on it. What UDL will break a Cantilever of same material 50 mm wide, 100 mm deep and 2 m long. (08 Marks)

Module-4

- 7 a. Derive simple torsion equation with usual assumptions. (10 Marks)
 - b. A solid shaft is subjected to a maximum torque of 25 kNm. Find the diameter of shaft, if the allowable shear stress and twist is limited to 80 MPa and twist 1° respectively for a length of 20 times diameter of shaft.

 (10 Marks)

OR

- 8 a. Derive Crippling load for a column with both ends Hinged. (10 Marks)
 - b. A solid round bar of 60 mm diameter and 2.5 m long is used as a strut. Find the safe compressive load for the strut. If
 - (i) Both ends Hinged.
 - (ii) Both ends fixed.

Take E = 200 GPa, Factor of safety = 3.0

(10 Marks)

Module-5

- 9 a. Define theories of failure and explain its relevance in design of members. (08 Marks)
 - b. Explain maximum Normal stress theory and Maximum shear stress theories of failure.

(12 Marks)

OR

- 10 a. Derive strain energy expression for a structure subjected to axial load. (05 Marks)
 - b. A rod of circular section is to sustain a twisting moment of 300 kNm and bending moment of 200 kNm. The material of the shaft is having $\sigma_y = 353$ MPa. Determine

Diameter of shaft using Rankines theory and Guest's theory using factor of safety = 3.0.

(15 Marks)