

BRIDGE COURSE

MATDIP401

Fourth Semester B.E. Degree Examination, April 2023 Advanced Mathematics – II

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. Find the angle between any two diagonals of a cube. (06 Marks)
 - b. Show that the points A(-4,9,6), B(-1,6,6) and C(0,7,10) from a right angled isosceles triangle. (06 Marks)
 - c. If $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are direction cosines of a line, then prove that $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$. (08 Marks)
- 2 a. Find the equation of the plane which passes through the point (3, -3, 1) and is normal to the line joining the points (3, 2, -1) and (2, -1, 5). (06 Marks)
 - b. Derive the equation of the plane in the intercept form $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. (06 Marks)
 - c. Find the angle between the planes, x y + z = 6 and 2x + 3y + z = -5. (08 Marks)
- 3 a. Find the unit normal to sum of the vectors 4i j + 3k and -2i + j 2k. (06 Marks)
 - b. Find $\vec{b} \times (\vec{a} \times \vec{c})$, where $\vec{a} = i + j k$, $\vec{b} = 2i j + 2k$, $\vec{c} = 3i j k$. (06 Marks)
 - c. Find the angle between the vectors $\vec{a} = 5i j + k$ and $\vec{b} = 2i 3j + 6k$. (08 Marks)
- 4 a. A particle moves along the curve $\vec{r} = \cos 2ti + \sin 2tj + tk$. Find its velocity and acceleration. (06 Marks)
 - b. If R = xi + yj + zk, show that $\nabla \cdot R = 3$. (06 Marks)
 - c. Find the F.curl \vec{F} where $\vec{F} = (x + y + 1)\vec{i} + \vec{j} (x + y)\vec{k}$. (08 Marks)
- 5 a. A particle moves along the curve $\vec{r} = (1 t^3)i + (1 + t^2)j + (2t 5)k$. Determine its velocity and acceleration. (06 Marks)
 - b. Show that the vector field, $\vec{F} = (3x + 3y + 4z)i + (x 2y + 3z)j + (3x + 2y z)k$ is solenoidal. (06 Marks)
 - c. Find curl \overrightarrow{A} where $\overrightarrow{A} = xyi + y^2zj + z^2yk$. (08 Marks)
- 6 a. Find the Laplace transform of $1 + 3t^2 + 4e^{-3t}$. (06 Marks)
 - b. Find the Laplace transform of $\sin 4t + t^3$. (06 Marks)
 - c. Find the Laplace transform of $1 + e^{2t} + t^2 + \cosh t$. (08 Marks)

MATDIP401

- (06 Marks)
- Find the Laplace transform of $\,e^{-2t}\sin 4t$. Find the Laplace transform of $t\sin 2t$. (06 Marks) b.
 - Find the inverse laplace transform of (08 Marks)
- Find the inverse Laplace transform of $\frac{1}{s^2 + 5s + 6}$ (06 Marks) 8
 - b. Find $L^{-1}\left\{\frac{1}{\left(s^2+1\right)\left(s^2+9\right)}\right\}$, by using convolution theorem. (06 Marks)
 - c. Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{+t}$, y(0) = y'(0) = 0 by using Laplace transform method. (08 Marks)