

18MATDIP41

Fourth Semester B.E. Degree Examination, Jan./Feb. 2023 Additional Mathematics - II

Time: 3 hrs.

WGALO

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Find the rank of the matrix 1

$$A = \begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$
by applying elementary row transformations. (06 Marks)

Solve the following system of equations using Gauss elimination method:

$$x - 2y + 3z = 2$$
, $3x - y + 4z = 4$ and $2x + y - 2z = 5$.

(07 Marks)

c. Find the eigen values of

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
 and also the corresponding eigen vectors. (07 Marks)

OR

Find the rank of the matrix by reducing if to echelon form

$$A = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 2 & 3 & 4 & 6 \\ 3 & 5 & 6 & 10 \\ 4 & -1 & -3 & 2 \end{bmatrix}$$
 (06 Marks)

b. Test for consistency and solve 5x + 3y + 7z = 4, 3x + 26y + 2z = 9, 7x + 2y + 10z = 5.

(07 Marks)

Solve the following system of equations by Gauss elimination method:

$$x + 2y + z = 3$$
, $2x + 3y + 3z = 10$, $3x - y + 2z = 13$. (07 Marks)

Module-2

a. Find the interpolating polynomial for the following values. 3

	X	0	1	2	3	
3	f(x)	1	2	1	10	

And hence evaluate f(4).

(06 Marks)

b. The Newton- Raphson method to find a real root of the equation

$$x^3 + x^2 + 3x + 4 = 0$$
 by performing two iterations.

(07 Marks)

c. Evaluate $\int_0^1 \frac{x \, dx}{1+x^2}$ by Weddle's rule taking seven ordinates.

(07 Marks)

18MATDIP41

Using Newton's interpolation formula find y(1.4) given

X	1	2	3	4	5
Y	10	26	58	112	194

(06 Marks)

- Find the real root of the equation $\cos x = 3x 1$ correct upto three decimal using Regula Falsi method. (07 Marks)
- Evaluate $\int_{-1}^{1} \frac{dx}{1+x^2}$ by using Simpson's $1/3^{rd}$ rule taking four equal strips. (07 Marks)

5 a. Solve
$$D^3y + 6D^2y + 11Dy + 6y = 0$$
. (06 Marks)

b. Solve
$$\frac{d^2y}{dx^2} - 4y = \cosh(2x - 1) + 3^x$$
 (07 Marks)

c. Solve
$$y'' + 3y' + 2y = 12x^2$$
 (07 Marks)

6 a. Solve
$$D^3y - 2D^2y + 4Dy - 8y = 0$$
. (06 Marks)

OR
a. Solve
$$D^3y - 2D^2y + 4Dy - 8y = 0$$
.
b. Solve $y'' + 4y' - 12y = e^{2x} - 3\sin 2x$ (07 Marks)

c. Solve
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = x^2 - 4x - 6$$
. (07 Marks)

Module-4

7 a. Form the PDE by eliminating the arbitrary constants
$$z = a \log(x^2 + y^2) + b$$
. (06 Marks)

b. Solve
$$\frac{\partial^3 z}{\partial x^2 \partial y} = \cos(2x + 3y)$$
 (07 Marks)

c. Solve
$$\frac{\partial^2 z}{\partial x^2} + z = 0$$
, given that when $x = 0$, $z = e^y$ and $\frac{\partial z}{\partial x} = 1$. (07 Marks)

8 a. Form the PDE by eliminating the arbitrary function
$$f\left(\frac{xy}{z}, z\right) = 0$$
. (06 Marks)

b. Solve
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \mathbf{x} + \mathbf{y}$$
. (07 Marks)

c. Solve
$$\frac{\partial^2 z}{\partial y^2} = z$$
, given the when $y = 0$, $z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$. (07 Marks)

Module-5

- 9 a. If A and B are any two events of S which are not mutually exclusive then prove that $P(A \cup B) = P(A) + P(B) P(A \cap B)$ (06 Marks)
 - b. Define conditional probability. Given for the events A and B, $P(A) = \frac{3}{4}$, P(B) = 1/5,

 $P(A \cap B) = \frac{1}{20}, \text{ find } P\left(\frac{A}{B}\right), P\left(\frac{\overline{A}}{\overline{B}}\right), P\left(\frac{\overline{\overline{A}}}{\overline{B}}\right), P\left(\frac{\overline{\overline{B}}}{\overline{A}}\right)$ (07 Marks)

c. Three machines M_1 , M_2 and M_3 produce identical items of their respective output 5%, 4% and 3% of items are faulty, on a certain day, M_1 has produced 25% of the total output, M_2 has produced 30% and M_3 the remainder. An item selected at random is found to be faulty. What are the chances that it was produced by M_3 ? (07 Marks)

OR

- 10 a. A bag contains 8 white and 6 red balls. Find the probability of drawing two balls of the same colour. (06 Marks)
 - b. State and prove Baye's theorem.

(07 Marks)

- c. If a pair of dice is thrown what is the probability that
 - i) The sum of numbers is divisible by 4
 - ii) The number on the first is greater than that on the second.

(07 Marks)