

Jan 1	A Comment		
C ARC IA	1 5		
USN	11 4:5		
1 11-11-11			
Aut 2			

18EC63

Sixth Semester B.E. Degree Examination, Jan./Feb. 2023 Microwave and Antennas

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. Use of Smith chart is permitted.

|--|

- 1 a. Describe the mechanism of oscillation of Reflex Klystron. (07 Marks)
 - b. Explain different mode curve in the case of Reflex Klystron. (06 Marks)
 - c. A reflex Klystron is to be operated at frequency of 10GHz, with DC beam voltage 300Volt repeller space 0.1cm for $1\frac{3}{4}$ mode. Calculate $P_{RF \text{ max}}$ and corresponding repeller voltage for a beam current 20mA.

OR

- 2 a. Explain with neat diagram of microwave system. (06 Marks)
 - b. Derive transmission line equation in voltage and current forms. (07 Marks)
 - c. Explain salient features of Smith chart. (07 Marks)

Module-2

- 3 a. What is reciprocal network? For a reciprocal microwave N port network prove that the Z and Y matrices are symmetrical. (07 Marks)
 - b. Explain S matrix representation of multiport network. (07 Marks)
 - c. State and prove the following properties of S parameters.
 - i) Symmetry property for reciprocal network
 - ii) Unitary property for a lossless junction. (06 Marks)

OR

- 4 a. Explain with a neat sketch a precision type variable attenuator. (07 Marks)
 - b. Explain with diagram a phase shifter. (06 Marks)
 - Explain magic tee and derive the S-matrix and mention its applications. (07 Marks)

Module-3

- 5 a. Derive the characteristic impedance of micro-strip line. (07 Marks)
 - b. Derive the characteristic impedance of shielded strip line. (07 Marks)
 - c. A certain micro strip line has the following parameters:

 $\varepsilon_r = 5.23$; h = 7 mils; t = 2.8 mils and w = 10 mils.

Calculate the characteristic impedance Z_0 of the line.

(06 Marks)

OR

6 a. Explain the basic Antenna parameters.

(07 Marks)

- b. Explain briefly:
 - i) Radiation intensity
 - ii) Beam efficiency
 - iii) Directivity and Gain.

(07 Marks)

Explain the radio communication link and derive Frii's transmission formula.

(06 Marks)

Module-4

- 7 a. Explain and derive the arrays of two isotropic point sources of same amplitude and phase.
 (10 Marks)
 - b. Explain with neat diagram linear arrays of 'n' isotropic point sources of equal amplitude and spacing. (10 Marks)

OR

- 8 a. Explain the electric and magnetic fields of short dipole. (07 Marks)
 - b. Explain the radiation resistance of short electric dipole. (07 Marks)
 - c. Explain the linear antenna. Also write supporting equations for E and H field. (06 Marks)

Module-5

- 9 a. Explain with relevant equations the small loop antenna. (06 Marks)
 - b. Explain the directivity of circular loop antenna with uniform current. (07 Marks)
 - c. With supporting equations explain rectangular Horn Antenna. (07 Marks)

OF

- 10 a. Explain with neat diagram of Helix Geometry and Helix modes. (07 Marks)
 - b. Explain practical design consideration for the mono-filar axial mode Helical antenna.

(07 Marks)

- c. Explain briefly:
 - i) Yagi Uda array
 - ii) Parabolic reflector.

(06 Marks)