Third Semester B.E. Degree Examination, Jan./Feb. 2023 Analog Electronics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Derive an expression to find the input impedance output impedance and voltage gain of a transistor connected in CE mode using voltage divider biasing. Use re model. (08 Marks)
 - b. For the circuit shown in Fig. Q1 (b) , find r_e , z_i , z_o and A_V and A_i with $r_o = \infty$. If r_o is changed to 50 k Ω , calculate z_i , A_V , A_i and Z_O and compare the results obtained with $r_o = \infty$. (08 Marks)

Fig. Q1 (b)

c. Mention the important characteristics of emitter follower,

(04 Marks)

OR

- 2 a. Draw the AC equivalent circuit of a emitter follower configuration and using approximate h-model find an expression to calculate the input impedance, output impedance, voltage gain and current gain.

 (10 Marks)
 - b. Find an expression to calculate the input impedance, voltage gain and output impedance of a transistor using complete hybrid model. (10 Marks)

Module-2

3 a. Compare BJT with FET.

(04 Marks)

b. For the circuit shown in Fig. Q3 (b), calculate (i) V_{GSQ} (ii) I_{DQ} (v) V_G and (vi) V_D .

(iii) V_{DS} (iv) V_{S}

(08 Marks)

IM-DEW WIKE

 $V_{DSS} = 8 \text{ mA}$ $V_{P} = -6 \text{ V}$

Fig. Q3 (b)

c. Derive an expression to find the input impedance, output impedance and voltage gain of a n channel FET using common gate configuration. (08 Marks)

OR

- 4 a. Draw the construction of depletion type MOSFET and explain ion drain and transfer characteristic. (08 Marks)
 - b. Draw the ac equivalent circuit of JFET connected in common source configuration and find the expression to calculate input impedance, output impedance and voltage gain assume self bias.

 (08 Marks)
 - c. Sketch the small signal ac model of an FET and find the value of transconductance g_m and r_d if $Y_{fs} = 4$ mS and $Y_{OS} = 33.33$ μ S. (04 Marks)

Module-3

- 5 a. Explain the low frequency response of BJT amplifier. (10 Marks)
 - b. Calculate the low frequency cut off for the network shown in Fig.Q5 (b) using the following values:

 $\begin{array}{l} \text{C}_{G} = 0.01 \ \mu\text{F} \,, \; C_{C} = 0.5 \ \mu\text{F} \,, \; C_{S} = 2 \ \mu\text{F} \,, \; R_{\text{sig}} = 10 \ \text{K}\Omega, \; R_{G} = 1 \ \text{M}\Omega, \; R_{D} = 4.7 \ \text{K}\Omega, \\ R_{S} = 1 \ \text{K}\Omega, \; R_{L} = 2.2 \ \text{K}\Omega, \; I_{DSS} = 8 \ \text{mA}, \; V_{P} = -4 \ \text{V}, \; r_{\phi} = \infty \,, \; V_{DD} = 20 \ \text{V}. \end{array} \tag{10 Marks}$

Fig. Q5 (b)

OR

- 6 a. What is Miller effect capacitance? Find an expression to calculate the input Miller capacitance and output Miller capacitance.

 (10 Marks)
 - b. Explain the high frequency response of an BJT amplifier.

(10 Marks)

Module-4

- 7 a. Find an expression to calculate the input impedance, output impedance and voltage gain of current series feedback amplifier. (08 Marks)
 - b. An amplifier has a bandwidth of 200 kHz and voltage gain of 1000, find (i) the change in band width and gain if 5% negative feedback introduced (ii) to get a band width of 1 MHz, what is the amount of feedback required. (08 Marks)
 - c. Write the advantages of negative feedback.

(04 Marks)

OR

- 8 a. Draw the circuit diagram of a weinbridge oscillator and explain its working. (06 Marks)
 - b. In a transistor Colpitts oscillator the inductor used is 1 mH and $h_{fe} = 150$. Find the value of C_1 and C_2 to produce oscillations of 120 kHz. (06 Marks)
 - c. Explain the working of UJT relaxation oscillator.

(08 Marks)

Module-5

- a. Explain how power amplifiers can be classified based on the location of Q point. (04 Marks)
 - Draw the circuit diagram of transformer coupled class A power amplifier and show the maximum conversion efficiency is equal to 50%.

 (08 Marks)
 - e. A Class B push pull amplifier is operated with $V_{CC} = 25$ V and $R_L = 8$ Ω , find (i) the maximum input power (ii) maximum output power and (iii) maximum circuit efficiency. (08 Marks)

- 10 a. Draw the circuit of series voltage regulator using transistor and explain its operation.
 (08 Marks)
 - b. What is regulation and write the expression for voltage regulation. If a dc supply provides 50 V under no load condition and produces 46 V under load calculate the voltage regulation.

 (06 Marks)
 - c. Find the output voltage and zener current in regulator circuit shown in Fig. Q10 (c).

