

USN

17EC34

Third Semester B.E. Degree Examination, Jan./Feb. 2023 **Digital Electronics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Construct a truth table and write a Boolean expression for the problem statement: An output variable Y is true when the value of the inputs exceeds 3. Design the logic circuit for the obtained expression.

 (10 Marks)
 - b. What do you mean by canonical SOP a POS? Explain with an example. (04 Marks)
 - c. Simplify $s = f(a, b, c) = \sum m(0, 1, 3, 4, 5, 6)$ using K-map and draw the logic diagram using NAND gates for obtained expression. (06 Marks)

OR

- 2 a. Simplify using K-map method. $K = f(w, x, y, z) = \sum (0, 1, 3, 4, 5, 7, 9, 12, 13) + \sum d(2, 8, 10, 11, 14)$ and draw the logic circuit for obtained expression. (10 Marks)
 - b. Simplify using QM-method. $D = f(a, b, c, d) = \sum (0, 1, 2, 5, 7, 8, 9, 14, 15)$. Verify the same using K-map method. (10 Marks)

Module-2

- 3 a. Implement $f_1(a, b, c) = \sum (0, 2, 6)$ and $f_2(a, b, c) = \sum (1, 3, 7)$ using 74138, 3:8 decoder IC.
 - b. With a neat circuit diagram, explain the carry look ahead adder with relevant expressions.
 (06 Marks)
 - c. Design 2-bit comparator using suitable gates.

- 4 a. Realize the function $y = f(a, b, c, d) = \sum (0, 1, 3, 5, 6, 7, 9, 10, 11, 13, 15)$ using 8:1 Mux. (10 Marks)
 - b. What is an Encoder? Design and explain 4:2 priority encoder.

(10 Marks)

(08 Marks)

Module-3

- a. Explain the working of Master-Slave JK-FF with the help of logic diagram. (08 Marks)
 - b. Obtain the characteristic equations for J-K and T-Flip-Flops (FF).

(06 Marks)

c. What is race around condition and how it is overcome? Explain with the help of logic diagram. (06 Marks)

OR

- 6 a. Explain the working of gated SR-latch with the help of logic circuit. Draw the timing diagrams also. (10 Marks)
 - b. Explain the working of +ve edge triggered D-flip-flop with functional table. Draw the timing diagrams of the same. (10 Marks)

Module-4

- 7 a. Design 4-bit ripple up counter using positive edge triggered T-flip-flops and draw the truth table and timing diagram of the same. (10 Marks)
 - b. Explain the working of 4-bit of twisted ring counter with necessary logic diagram, truth table and timing diagrams. (10 Marks)

OF

- 8 a. What is register? Explain 4-bit serial-in, serial-out unidirectional shift register with the help of diagram. (10 Marks)
 - b. Design MOD-6 synchronous counter using SR flip-flops.

(10 Marks)

Module-5

9 a. What are Mealy and Moore Models? Explain.

(08 Marks)

b. Design 3-bit synchronous up counter.

(12 Marks)

OR

10 a. Analyze the following sequential circuit of Fig.Q.10(a), by writing input and output equations, state table and state diagram. (12 Marks)

b. Draw a state table and state diagram with an example.

(08 Marks)

* * * * *