

CBCS SCHEME

18EE53

Fifth Semester B.E. Degree Examination, Jan./Feb. 2023 Power Electronics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. List the different types of power electronic circuits and mention their conversion functions.
 - b. Mention the various characteristics and specifications of switches. (10 Marks)
 (06 Marks)
 - c. Explain the peripheral effects in power electronic circuits. (04 Marks)

OR

2 a. Describe reverse recovery characteristics of diode.

(08 Marks)

b. Derive the time constant of RC circuit.

- (08 Marks)
- c. The forward voltage drop of a power diode is $V_D = 1.2$ V at $I_D = 300$ A, assuming n = 2 and $V_T = 25.7$ mV, find the reverse saturation current I_S . (04 Marks)

Module-2

a. Discuss the different operating regions of a power BJT.

(06 Marks)

- b. Describe the switching characteristics of power BJT with necessary waveforms during turn-on. (08 Marks)
- c. Explain the steady state characteristics of following devices: (i) MOSFET (ii) IGBT

(06 Marks)

OR

- 4 a. Explain with neat circuit diagrams proportional base control and anti-saturation control.
 - (10 Marks)
 Explain the necessity of isolation using pulse transformer and opto-couplers. (10 Marks)

Module-3

- 5 a. Using two transistor analogy, derive an expression for anode current in a thyristor. (10 Marks)
 - b. Distinguish between:
 - (i) Latching current and holding current of a thyristor
 - (ii) Converter grade and inverter grade thyristors (04 Mark
 - c. Sketch the VI characteristics and then explain latching current, holding current and break over voltage. (06 Marks)

OR

- 6 a. Explain the need for $\frac{dv}{dt}$ and $\frac{di}{dt}$ protection. (06 Marks)
 - b. A SCR circuit has the following data:

supply voltage = 200 V,
$$\frac{dv}{dt}$$
 rating = 100 $\frac{v}{\mu s}$, $\frac{di}{dt}$ rating = 50 $\frac{A}{\mu s}$,

calculate the snubber circuit elements.

(06 Marks)

With a neat circuit diagram and waveforms, explain the RC triggering for SCR. (08 Marks)

Module-4

- 7 a. With neat circuit and waveforms, derive an expression for the rms value of output voltage of 1-φ full wave controlled rectifier with R load. (08 Marks)
 - b. For the 1-φ full converter having inductive load and continuous load current, obtain:
 - (i) Average output voltage
- (ii) rms output voltage

(06 Marks)

c. Describe the working of 1-φ dual converter and draw the waveforms.

(06 Marks)

OR

- 8 a. Derive an expression for the rms value of the output voltage of a bi-directional AC voltage controller employing ON-OFF control. (10 Marks)
 - b. With necessary waveforms, derive the expression for rms output voltage of a 1-φ full wave controller with inductive load for discontinuous load current.
 (10 Marks)

Module-5

9 a. Explain the principle of operation of a step-up chopper.

(06 Marks)

b. Classify the different types of chopper circuits.

(04 Marks)

c. With the help of circuit and quadrant diagrams, explain the working of a class E chopper.

(10 Marks)

OR

- 10 a. Explain the operation of single phase full bridge inverter with R load and draw the waveforms. (08 Marks)
 - b. Explain sinusoidal PWM technique used for controlling the output voltage of an inverter.

(06 Marks)

c. Write a note on performance parameters for inverters.

(06 Marks)
