STRUTE OF THE	
20 Cases SE	
	-
Z (USN 274)	
E (pate	_

Time: 3 hrs.

AL09-6/23

0

10EE54

Fifth Semester B.E. Degree Examination, Jan./Feb. 2023

D.C. Machines and Synchronous Machines

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part,

PART – A

- 1 a. What are lap and wave windings? How do they differ from each other? (04 Marks)
 - b. With usual notation, derive the expressions for demagnetizing and cross magnetizing ATs/pole. (08 Marks)
 - c. An 8 pole wave connected DC generator has 480 armature conductors. The armature current is 200A. Find the armature reaction demagnetizing and cross magnetizing ampere turns per pole. If: i) brushes are on G.N.A. ii) brushes are shifted 6° electrical from G.N.A. (08 Marks)
- 2 a. Draw and explain the various characteristics of DC shunt motor and DC series motor.

(06 Marks)

- b. With the help of a neat diagram, explain the Ward-Leonard method of speed control. Write is advantages and disadvantages. (07 Marks)
- c. A DC shunt motor runs at a speed of 1000 rpm, on no load taking a current of 6A from the supply, when connected to 220V DC supply. Its full load current is 50A. Calculate its speed on full load. Assume $R_a = 0.3\Omega$ and $R_{sh} = 110\Omega$. (07 Marks)
- 3 a. Explain the various losses in a DC machine and also derive the condition for maximum efficiency. (08 Marks)
 - b. Draw and explain the power flow diagrams of DC generator and motor. (04 Marks)
 - c. A 6 pole, 500Volts, wave connected shunt motor has 1200 armature conductors and useful flux/pole of 20mWb. Armature and field resistances are 0.5Ω and 250Ω . What will be the speed and torque developed by the motor when it draws 20Amp from supply. Neglect armature reaction. If magnetic and mechanical losses are 900 watts. Find:
 - i) Back emf ii) Speed iii) T_a iv) T_{sh} v) efficiency. (08 Marks)
- a. With a neat diagram, explain back to back test on two shunt connected DC machines. Also mention its advantages. (10 Marks)
 - b. A test on two coupled similar from way motors, with their fields, connected in series, gave the following results when one machine acted as a motor and other as a generator.

Motor: Armature current = 56A, Armature voltage = 590V voltage across the field winding = 40V

Generator : Armature current = 44A, Armature voltage = 400V, field voltage drop = 40V Resistance of each armature = 0.3Ω

Calculate the efficiency of the motor and generator at this load.

(10 Marks)

PART-B

- 5 a. Explain the construction of salient type and non salient type of rotors.
- (06 Marks)

b. Derive the emf equation of synchronous generator.

- (07 Marks)
- c. A 3 phase, 4 pole, 50 Hz star connected alternator has flux per pole of 0.12Wb. The slots per pole per phase is 4 and the number of conductors per slots are 4, if the winding coil span is 150°. Estimate the rms value of resultant voltage per phase and the line voltage. (07 Marks)

- With the help of neat sketches, how the voltage regulation can be determined using EMF method from the O.C. test and S.C. test results.
 - b. A 3 phase, star connected alternator is rated at 1600KVA, 13500 volts. The armature resistance and synchronous reactance are 1.5Ω and 30Ω respectively per phase. Calculate the percentage regulation for a load of 1280KW at
 - i) U.P.f
 - ii) 0.8 p.f. lag
- iii) 0.8 p.f. lead.

(10 Marks)

What are the conditions to be satisfied, when two alternators are connected in parallel? 7 Derive the expression for synchronizing power and torque neglecting the effect of Ra.

(10 Marks)

- b. Two single phase alternators operating in parallel have induced emf's on open circuit of $220|_{0}^{\circ}$ and $220|_{10}^{\circ}\text{V}$ and reactance's of $j3\Omega$ and $j4\Omega$. Calculate :
 - Terminal voltage
 - ii) Currents
 - iii) Power delivered by each of the alternators to a load of resistance 6Ω .

(10 Marks)

Explain Hunting in synchronous motor. 8

- (04 Marks)
- b. Explain V-curve and inverted V curves of synchronous machines.
- (06 Marks)
- c. Explain why a synchronous motor is not self starting. Briefly explain the following starting method:
 - i) Auxiliary motor starting
 - ii) Induction motor starting

(10 Marks)