

CBCS SCHEME

18EE45

Fourth Semester B.E. Degree Examination, Jan./Feb. 2023 Electromagnetic Field Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Derive the relationship between rectangular and cylindrical coordinate system. (05 Marks)
 - b. Define the terms gradient and divergence. Give equations for them in rectangular coordinates. Mention their physical significance. (09 Marks)
 - c. Define scalar and vector. For a vectors $\vec{A} = 6\vec{a_x} + 2\vec{a_y} + 6\vec{a_z}$ and $\vec{B} = -2\vec{a_x} + 9\vec{a_y} \vec{a_z}$
 - (i) Show that vectors \vec{A} and \vec{B} are perpendicular to each other.
 - (ii) Find $\vec{A} \times \vec{B}$ and show that $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$

(06 Marks)

OF

2 a. State and prove the Gauss law.

(08 Marks)

- b. Three point charges $Q_1 = -1\mu c$, $Q_2 = -2\mu c$ and $Q_3 = -3\mu c$ are paced at the corners of an equilateral triangle of side 1m. Find the magnitude of electric field intensity at the point bisecting the line joining Q_1 and Q_2 .
- c. Starting from Gauss theorem obtain Maxwell's equation in terms of flux density or point form of Gauss law. (06 Marks)

Module-2

- 3 a. Define the term electric potential. Obtain the expression for Absolute electric potential at a point due to point charge obtained from potential difference equation. (12 Marks)
 - b. Find the potential and volume charge density at point P(0.5, 1.5, 1) in the free space. Given the potential field $V = 2x^2 y^2 z^2$. (08 Marks)

OR

4 a. Explain the concept of "continuity equation" and hence show that

 $\nabla \cdot \vec{J} = -\frac{\partial \rho_{v}}{\partial t}$ (08 Marks)

- b. Derive an expression for capacitance of a parallel plate capacitor with dielectric interface (∈_{r1} and ∈_{r2}) parallel to the conducting plates.
- c. Let A = 120 cm², d = 5mm and ∈_R =12 for the parallel plate capacitor. Calculate the capacitance after connecting a 40 V battery across the capacitor, calculate E and total stored energy.

 (06 Marks)

Module-3

- 5 a. Starting from Gauss's law in integral form, derive Poisson's and Laplace equation. Write Laplace equation in all coordinate systems. (09 Marks)
 - b. Using Poisson's equation, obtain the expression for capacitance of a parallel plate capacitor.
 (06 Marks)

c. Derive an expression for capacitance between two concentric spherical shell having radius (05 Marks) R_1 and R_2 . $(R_2 > R_1)$

Derive an expression for Ampere's law.

(05 Marks)

- b. Evaluate both sides of Stoke's theorem for the field $\vec{H} = 10\sin\theta \,d\phi$ Ampere's/meter and the surface $r=3m,\,0\leq\theta\leq90^\circ$, $0^\circ\leq\varphi\leq90^\circ$. Let the surface has the \hat{a}_r direction. What each (10 Marks) side of Stoke's theorem represents?
- Find the magnetic field at point P(0.01, 0, 0) if current through a coaxial cable is 6A, which (05 Marks) is along the z-axis and q = 3mm, b = 9mm, c = 11mm.

- Derive an expression for the force acting between two conductors carrying current in opposite directions.
 - b. A point charge of Q=40 μ c is moving with a velocity of $\overrightarrow{V} = (-3\overrightarrow{a_x} 4\overrightarrow{a_y} + 4.5\overrightarrow{a_z}) \times 10^6$ m/s. Find the magnitude of the vector force exerted on moving particle by the field:
 - i) $\vec{B} = 2\vec{a_x} 3\vec{a_y} + 5\vec{a_z}$ mT
 - ii) $\vec{E} = 2\vec{a}_x + 3\vec{a}_y 4\vec{a}_z$ kV/m
 - iii) Both B and E active together.

(08 Marks)

c. Derive an expression for inductance of a solenoid

(04 Marks)

Define magnetization, relative permeability and susceptibility. Derive the relation

- $\mu_r = (1 + \chi)$ b. Find the magnetization in a magnetic material of (i) permeability 1.8×10⁻⁵ H/m and H = 120 A/m and (ii) B = 300 μT and $\chi_m = 15$ (iii) $\mu_r = 22$, if there are 8.3×10^{28} atom/m³ and each atom contribute a dipole moment of 4.5×10^{-27} Am². (06 Marks)
- An air cored toroid has a cross sectional area of 6 cm², a mean radius of 15 cm and is with 500 turns and carries a current of 4 A. Find magnetic field intensity at the mean radius.

(05 Marks)

Module-5

a. Derive the integral and differential form of Faraday's law.

(08 Marks)

b. List Maxwell's equations in point form and in integral form.

(06 Marks)

c. The circular loop conductor at z = 0 plane has a radius of 0.1 mt and resistance of 5Ω . Given $\vec{B} = 0.2 \sin 10^3 t \vec{a}_z$ Tesla. Find current in the coil. (06 Marks)

- Modify the Ampere's circuital law to suit the time varying condition and hence obtain an 10 (10 Marks) expression for displacement current density.
 - b. The magnetic field intensity of uniform plane wave in air is 20 A/m in \hat{a}_v direction. The wave is propagating in \hat{a}_z divides at an angular frequency of 2×10^9 rad/sec. Find
 - (i) Phase Shift constant (ii) Wavelength (iii) Frequency (iv) Amplitude of electric field (10 Marks) intensity.