

USN 17EE45

Fourth Semester B.E. Degree Examination, Jan./Feb. 2023

Electromagnetic Field Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. For a vector field defined by the equations, $\vec{F} = x^2 y \hat{a}_x + 2z \hat{a}_y + xy 2 \hat{a}_z$. Find the curve of \vec{F} .
 - b. Transform the vector 10_{ax} at P(x = -3, y = 2 and z = 4) to spherical coordinates. (06 Marks)
 - c. A charge $Q_2 = 121 \times 10^{-9}$ C is located in vacuum at $P_2(-0.03, 0.01, 0.04)$ m. Find the force on Q_2 due to $Q_1 = 110$ µc at $P_1(0.03, 0.08, -0.02)$ m. (06 Marks)

OR

- 2 a. Two points A(2, 2, 1) and B(3, -4, 2) are given in the Cartesian system. Obtain the vector from A to B and a unit vector directed from A to B.

 (06 Marks)
 - b. Two small identical conducting spheres have charges of 2nc and -1nc respectively. When they are separated by 4 cm apart, find the magnitude of the force between them. If they are brought into contact and then again separated by 4cm, find the force between them.

(06 Marks)

- c. If $\vec{D} = xy^2z^2 \hat{a}_x + x^2yz^2 \hat{a}_y + x^2y^2z \hat{a}_z c/m^2$ Find:
 - i) An expression for ρ_v
 - ii) The total charge will in the cube where cube is defined by $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$.

(08 Marks)

Module-2

- 3 a. Given that the potential field is $V = 2x^2y 5z$, find the potential, electric field intensity and volume charge density at point P(-4, 3, 6). (08 Marks)
 - b. At the boundary between glass ($\in_r = 4$) and air, the lines of electric field make an angle of 40° with normal to the boundary. If electric flux density in the air is $0.25 \mu c/m^3$, determine the orientation and magnitude of electric flux density in the glass. (06 Marks)
 - c. Derive the continuity equation in point and integral forms.

(06 Marks)

OR

- a. Find the total current in outward direction form a cube of 1m, with one corner at the origin and edges parallel to the coordinate axes, if $\bar{J} = 2x^2 \bar{a}_x + 2xy^3 \bar{a}_y + 2xy \bar{a}_z A/m^2$. (08 Marks)
 - b. Determine the capacitance of a capacitor consisting of two parallel plates 30cm × 30cm surface area, separated by 5mm in air. What is the total energy stored by the capacitor is charged to a potential difference of 500V? What is the energy density? (07 Marks)
 - c. An electric potential is given by $V = \frac{60 \sin \theta}{r^2} V$. Find V and \overrightarrow{E} at P(3, 60°, 25°). (05 Marks)

Module-3

State and prove Uniqueness Theorem.

(10 Marks)

- b. Determine whether or not the potential equations 4
 - i) $V = 2x^2 4y^2 + z^2$
 - ii) $V = r^2 \cos \phi + \theta$

Satisfy the Laplace's equation.

(05 Marks)

List the Maxwell's equation is point and integral forms.

(05 Marks)

State and prove Biot Savart law.

(06 Marks)

- Find the magnetic flux density at the centre '0' of a square of sides equal to 5m and carrying (10 Marks) 10 amperes of current. (04 Marks)
- Define scalar and vector magnetic potentials.

- A point charge, Q = -60nc is moving with a velocity of 6×10^6 m/s in the direction specified by unit vector $-0.48\hat{a}_x - 0.6\hat{a}_y + 0.64\hat{a}_z$. Find the magnitude of the force on a moving charge in the magnetic field. $B = 2\hat{a}_x - 6\hat{a}_y + 5\hat{a}_z$ mT. (06 Marks)
 - b. Find the magnitude of magnetic flux density in a material for which
 - i) The magnetization is 2.8 A/m, the magnetic susceptibility is 0.0025
 - ii) The magnetic field intensity is 1300 A/m and the relative permeability is 1.006.

(06 Marks)

c. Find the normal component of the magnetic field which traverses form medium -1 to medium -2 havign $\mu_{r_1}=2.5$ and $\mu_{r_2}=4$. Given that $\vec{H}=-30\,\hat{a}_x+50\,\hat{a}_y+70\,\hat{a}_z$ V/m in medium -1 and the interface of the two media is x - y plane.

Find the magnetic field intensity inside a magnetic material, for the following conditions.

 $M = 100 \text{ A/m} \text{ and } \mu = 1.5 \times 10^{-3} \text{ H/m}$

 $B = 200 \mu T$, $\chi_m = 15$.

(06 Marks)

- b. A air core toroid has a mean radius of 40mm and is wound with 4000 turns of wire. The circular cross-section of the toriod has a radius of 4mm. A current of 10A is passed in the (06 Marks) wire. Find the inductance and the energy stored.
- A rectangular coil as shown below is in the magnetic field given by $\overline{B} = 0.05 \frac{\hat{a}_x + \hat{a}_y}{\sqrt{2}} T$. Find the torque about Z -axis when the coil is in position shown in Fig.Q8(c) and carries a current

of 5A.

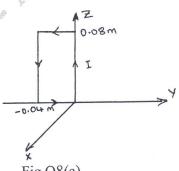


Fig.Q8(c) 2 of 3 (08 Marks)

Module-5

- For a lossy electric, $\sigma = 5$ S/m and $\overline{\epsilon_r} = 1$. The electric field intensity is E = 100 sin $10^{10}t$. Find J_C, J_D and frequency at which both have equal magnitudes. (08 Marks)
 - b. Determine:
 - i) Attenuation constant
 - ii) Phase constant
 - iii) Propagation constant
 - iv) Wave length
 - v) Phase velocity
 - vi) Intrinsic impedance

For damp soil of frequency of 1 MHz given that $\varepsilon_r = 12$, $\mu_r = 1$ and conductivity $\sigma = 20 \times 10^{-3} \text{ S/m}.$

The depth of penetration in a certain conducting medium is 0.1m and the frequency of electromagnetic wave is 1.0 MHz. Find the conductivity of the conducting medium.

(06 Marks)

- 10 a. Find the displacement current density within a parallel plate capacitor having a dielectric with $\varepsilon_r = 10$, are of plates $A = 0.01 \text{m}^2$, distance of separation d = 0.05 mm. Applied voltage is (08 Marks) $V = 200 \sin 200t$.
 - b. A 800 MHz plane wave travelling has an average pointing vector of 8MW/m². If the medium is losses with $\mu_r = 1.5$ and $\epsilon_r = 6$.
 - Find: i) Velocity of wave
 - ii) Wave length
 - iii) Impedance of the medium
 - iv) rms electric field E
 - v) rms magnetic field H.

(12 Marks)