GBCS SCHEME

USN

15EE45

Fourth Semester B.E. Degree Examination, Jan./Feb. 2023 Electromagnetic Field Theory

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define Divergence and Curl in Cartesian coordinate system with mathematical expressions.
 - b. Define:
 - i) Electric Field intensity
 - ii) Gauss Law.

(06 Marks)

OR

2 a. Find Curl \overline{H} if $\overline{H} = (2\rho\cos\phi \bar{a}_{\rho} - 4\rho\sin\phi \bar{a}_{\phi} + 3\bar{a}_{z})$.

(04 Marks)

- Identical point charges of 3μC are located at the four corners of the square of 5cm side, find the magnitude of force on any one charge.
- c. Derive an expression for field due to an infinite line charge using Gauss law.

(06 Marks)

Module-2

3 a. Obtain the boundary condition between conductor and free space in an electric field.

(08 Marks)

- b. The potential field in free space is given by V = 50/r, $a \le r \le b$ (spherical).
 - i) Show that $\rho_v = 0$ for a < r < b
 - ii) Find the energy stored in the region a < r < b.

(08 Marks)

OR

- 4 a. Potential is given by $V = 2(x+1)^2 (y+2)^2 (z+3)^2$ volts in free space. At a point P(2, -1, 4). Calculate: i) Potential ii) Electric Field Intensity. (04 Marks)
 - b. Show that the potential at the origin due to the uniform surface charge density ρ_s over a ring z = 0 and radius between R < r < R + 1, is independent of R. (06 Marks)
 - c. Obtain an expression for the energy stored in a capacitor.

(06 Marks)

(08 Marks)

Module-3

- 5 a. From the Gauss's law derive Poisson's and Laplace's equation.
 - b. Evaluate both sides of the Stoke's theorem for the field $H = 6xya_x 3y^2a_y$ A/m and the rectangular path around the region, $2 \le x \le 5$, $-1 \le y \le 1$, z = 0. Let the positive direction of ds be az.

OR

6 a. State and explain Ampere's circuital law.

(04 Marks)

- b. Given the potential field $V = 3x^2yz + ky^3z$ volts:
 - i) Find K if potential field satisfies Laplace's equation.
 - ii) Find \overline{E} at (1, 2, 3).

(06 Marks)

Find the incremental field strength at P_2 due to the current element of $2\pi a_z \pi Am$ at P_1 . The co-ordinates of P_1 and P_2 are (4, 0, 0) and (0, 3, 0) respectively. (06 Marks)

Module-4

- 7 a. Define:
 - i) Magnetization
 - ii) Permeability.

(04 Marks)

- b. A current element 4cm long is along y-axis with a current of 10mA flowing in y-direction. Determine the force on the current element due to the magnetic field, if the magnetic field $H = [5a_x/\mu]A/m$. (06 Marks)
- c. Derive an expression for the force on differential current carrying element.

(06 Marks)

OR

- 8 a. Discuss the magnetic boundary conditions at the interface between two media of different permeabilities. (08 Marks)
 - b. Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical tube of 6cm diameter. The length of the tube is 60cm and the solenoid is in air. (04 Marks)
 - c. State Lorentz force equation.

(04 Marks)

Module-5

9 a. Derive the wave equation for uniform plane wave propagation in perfect dielectric.

(08 Marks)

b. A conductor 1cm in length is parallel to z-axis and rotates at radius of 25cm at 1200rpm. Find the induced voltage, if the radial field is given by $\overline{B} = 0.5\overline{a}_{\rm r}$ T. (08 Marks)

OR

- 10 a. Obtain the solution of wave equation for uniform plane wave in free space. (08 Marks)
 - b. Calculate the induced e.m.f at t = 10sec. When the flux through each turn of a 200 turn coil is t(t-1)m wb. (04 Marks)
 - c. The magnetic field intensity of uniform plane wave in air is 20(A/m) in \overline{a}_y direction. The wave is propagating in the \overline{a}_z direction at an angular frequency of 2×10^9 (rad/sec). Find: i) Phase shift constant ii) Wave length. (04 Marks)

* * * * *