

17EE32

Third Semester B.E. Degree Examination, Jan./Feb. 2023

Electric Circuit Analysis

Time: 3 hrs.

ALORE

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Differentiate between:
 - i) Active and passive elements
 - ii) Unilateral and bilateral elements
 - iii) Linear and non-linear elements
 - iv) Lumped and distributed elements
 - v) Independent and dependent sources.

(10 Marks)

b. Find the current flowing through the 10Ω resistor using source transformation technique for the circuit given in Fig.Q.1(b). (10 Marks)

OR

2 a. Define and explain supernode.

(04 Marks)

b. Find the equivalent resistance between the terminals A and B using star-delta transformation technique for the circuit given in Fig.Q.2(b). (08 Marks)

Fig.Q.2(b)

1 of 4

c. For the circuit shown in the Fig.Q.2(c), find the current through the 5Ω resistor using mesh analysis.

Module-2

State and explain superposition theorem.

(05 Marks)

Find the current through the 10Ω resistor using Thevenin's theorem for the circuit shown in Fig.Q.3(b).

Fig.Q.3(b)

For the circuit given in Fig.Q.3(c), find the value of load impedance Z_L for which power transferred is maximum.

OR

Use Norton's theorem for the circuit of Fig.Q.4(a) to determine the power absorbed by the (10 Marks) 9Ω resistor.

2 of 4