

21CS33

Third Semester B.E. Degree Examination, Jan./Feb. 2023 **Analog and Digital Electronics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

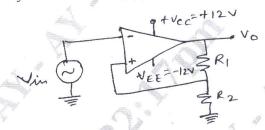
- 1 Derive an expression for collector current and collector emitter voltage of voltage divider bias circuit (accurate analysis). (08 Marks)
 - Explain relaxation oscillator.

(06 Marks)

Sketch and explain the working of Peak detector.

(06 Marks)

OR


Explain R-2R ladder type DAC with a neat diagram.

(06 Marks)

List the advantages of active filters over passive filters.

(06 Marks)

For the circuit shown in Fig. Q2 (c) below find the value of R₁ and R₂ if supply voltages are +12 and -12 V. Assume hysteresis with -6 V.

(08 Marks)

3 a. Find all the prime implicates of the function, $f(a, b, c, d) = \Pi(0,2,3,4,5,12,13) + \Pi d(8,10)$

using the Quine-McCluskey method.

(10 Marks)

- Plot the Karnaugh maps and find all the minimal sums and minimal products of the following Boolean functions.
 - (i) $f(a,b,c) = \sum (2,4,5,6,7)$

(i)
$$f(a,b,c) = \Pi(1,4,5,6)$$

(10 Marks)

With an example, explain Petrik's method.

(06 Marks)

For the given Boolean function, determine a minimal sum and a minimal product using MEV techniques using a, b and c as the map variables.

$$f = \sum (3,4,5,7,8,11,12,13,15)$$

(08 Marks)

Explain Entered variable map method.

(06 Marks)

		Module-3
5	a.	Explain the importance of three-state buffer. (06 Marks)
	b.	With a neat diagram, explain 3 to 8 line decoder. (06 Marks)
	c.	What is a multiplexer? Write the logic diagram for 8:1 multiplexer using 4 input AND and
		OR gates. (08 Marks)
		OR
6	a.	Discuss different types of hazards in combinational circuits. (08 Marks)
	b.	Distinguish between combinational and sequential circuit. (06 Marks)
	C.	Write a note on PLA and PAL. (06 Marks)
		Module-4
7	a.	Explain the working of JK master slave flip-flop with a sketch, truth table and symbol.
	1	(06 Marks)
	b.	What is D flip flop? Illustrate the operation of the clear and preset inputs in D-flip-flop with
	0	timing diagram. (08 Marks)
	C.	What is VHDL? Show how to model the 4 to 1 multiplexer using a VHDL conditional
		assignment statement. (06 Marks)
		OR
8	a.	What is T-flip-flop? Show how to convert D-flip flop into T-flip-flop. (08 Marks)
o	b.	What are the three different models for writing a module body in VHDL? Give example for
	υ.	any one model. (06 Marks)
	c.	Explain with a neat diagram, VHDL program structure. (06 Marks)
	٥.	Explain with a near diagram, viribe program structure.
Module-5		
9	a.	With a neat diagram, explain 4-bit parallel adder with accumulator. (10 Marks)
	b.	Define counter. Design mod-5 counter using J-K flip flop. (10 Marks)
equ.		
7		OR
10	a.	With neat diagram, explain 4 bit SISO register. (08 Marks)
	b.	Mention the Application of shift registers. (05 Marks)
	C.	Explain the working of a 3 bit shift register. (07 Marks)