

CBCS SCHEME

15CS54

Fifth Semester B.E. Degree Examination, Jan./Feb. 2023 Automata Theory and Computability

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain the different functions performed on strings with example.
 - b. Define DFSM. Construct the DFSM for the language L = {w : w is the string representing floating numbers}. (05 Marks)
 - c. Draw a DFA to accept strings of a's and b's such that:
 - (i) Language has even number of a's and odd number of b's.
 - (ii) Language has not more than three a's.

(06 Marks)

(05 Marks)

OR

2 a. Convert the following NDFSM to DFSM:

Fig.Q2(a)

(06 Marks)

b. Minimize the following DFSM:

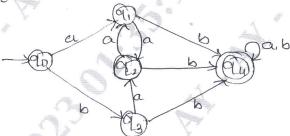


Fig.Q2(b)

(06 Marks)

c. Define Moore machine and Mealy machine.

(04 Marks)

Module-2

3 a. Define Regular Expression Work the RE for the languages.

 $L = \{a^n b^m : (m + n) \text{ is even}\}\$

 $L = \{\text{String of a's and b's whose } 3^{\text{rd}} \text{ symbol from right is a} \}$

(06 Marks)

b. Build a regular expression from an FSM.

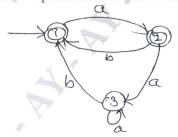


Fig.Q3(b)

(06 Marks)

c. Convert regular expression (a + b)* b(a + b) to NDFSM.

(04 Marks)

OR

- 4 a. State and prove the pumping lemma for regular languages. (06 Marks) b. Show that the $L = \{a^n : n \text{ is prime}\}$ is not a regular. (04 Marks)
 - c. Prove that regular language are closed under complement, intersection, difference reverse and letter substitution. (06 Marks)

Module-3

- a. Define Context Free Grammar. Write the grammar for balanced parentheses. (04 Marks)
 - b. When a grammar is said to be ambiguous, show that expression grammar is ambiguous.

 Write unambiguous grammar for the same. (08 Marks)
 - c. Eliminate ∈-rules from the given grammar.
 - $S \rightarrow aTa$
 - $T \rightarrow ABC$
 - $A \rightarrow aA|C$
 - $B \to Bb|C$
 - $C \rightarrow C \in$

(04 Marks)

OR

- 6 a. Define Push Down Automata. Construct the PDA for $L = \{a^nb^{2n} : w \in \{a, b\}^*\}$. Write transition diagram. Test that the "aaabbbbbb" string is accepted by the model or rejected by the model. (08 Marks)
 - b. Convert the following grammar to CNF:
 - $S \rightarrow aACa$
 - $A \rightarrow B|a$
 - $B \rightarrow C|c$
 - $C \rightarrow cC \in$

(08 Marks)

(08 Marks)

Module-4

- 7 a. Prove that Content Free Languages are closed under union, concatenation, Kleene star, reverse and letter substitution. (08 Marks)
 - b. Show that the $L = \{a^n b^n c^n : n \ge 0\}$ is not a Content Free Language.

OR

- 8 a. With a neat diagram, explain the working of Turing Machine. (04 Marks)
 - b. Explain different techniques for turing machine construction. (04 Marks)
 - c. Design a turing machine M to recognize the language $\{1^n 2^n 3^n \mid n \ge 1\}$ (08 Marks)

Module-5

- 9 a. Explain the variant turing machine models in detail. (08 Marks)
 - b. Explain the working of linear bounded automation. (08 Marks)

OR

- Write short notes on the following:
 - a. Decidable and undecidable language
 - b. Halting problem of turing machine
 - c. Quantum computers
 - d. Church Turing Thesis (16 Marks)