

18CS33

(06 Marks)

Third Semester B.E. Degree Examination, Jan./Feb. 2023 Analog and Digital Electronics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain the construction and working principle of LED. (05 Marks)
 - b. List the types of transistor biasing. Explain Fixed Bias Circuit with necessary analysis.

(06 Marks) Explain the operation of a stable multivibrator using IC555 and derive the expression for

Explain the operation of a stable multivibrator using IC555 and derive the expression for time period, frequency and duty cycle.

OR

- 2 a. Explain the operation of peak detector circuit with neat diagram. (05 Marks)
 - b. List and explain the performance parameters of regulated power supply. (06 Marks)
 - c. Explain the 3 bit flush type ADC with necessary circuit and truth table. (09 Marks)

Module-2

3 a. Find the minimum sum of products using K-map and identify prime implicants.

$$f(a,b,c,d) = \sum m(0,2,6,10,11,12,13) + d(3,4,5,14,15)$$
 (06 Marks)

b. Find the minimum SOP and POS using K-map.

$$f(a,b,c,d) = \sum m(6,7,9,10,13) + d(1,4,5,11)$$
 (08 Marks)

c. List the steps for Petrick's method.

OR

4 a. Find all the prime implicants using Quine Mc Cluskey method. Verify the result using K-map.

$$f(w,x,y,z) = \sum m(7,9,12,13,14,15) + d(4,11)$$
 (12 Marks)

b. Using Prime implication chart, find all the minimum SOP of the function using Quine McCluskey method.

$$f(a,b,c,d) = \sum_{i=0}^{\infty} m(0,1,2,3,10,11,12,13,14,15)$$
 (08 Marks)

Module-3

a. Realize the function using only two input NAND gate and inverters.

$$f_1 = \sum m(0, 2, 3, 4, 5), f_2 = \sum m(0, 2, 3, 4, 7), f_3 = \sum m(1, 2, 6, 7)$$
 (06 Marks)

b. Draw the timing diagram of the circuit. Assume propagation delay of each gate is 20 ns.

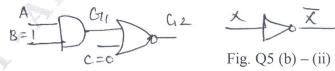


Fig. Q5(b) - (i)

C. List the types of hazards. Explain how static 1 hazard can be detected and removed with suitable example. (09 Marks)

OR

6	a.	Write short notes on three state buffers.	(06 Marks)
	b.	Design 7-segment decoder using PLA.	(06 Marks)
	C.	Construct 8: 1 mux using only 2: 1 mux.	(08 Marks)
		Module-4	
7	a.	Given that $A = "00101101"$ and $B = "10011"$. Determine the value of F	
•		F<=not B & "0111" or A&"1" and "1"&A	(04 Marks)
	b.	Write the complete VHDL code for 4 bit binary adder.	(08 Marks)
	c.	Explain how the VHDL code can be compiled simulated and synthesized with exa	ample.
	٥.		(08 Marks)
		OR	
8	a.	Explain T Flip Flop with truth table.	(07 Marks)
O	b.	Explain Master-Slave JK flip flop with neat diagram.	(08 Marks)
	c.	Write short notes on switch debouncing with an SR Latch.	(05 Marks)
	С.	Write short notes on swarz assistance	
		Module-5	
9	a.	Explain 8 bit serial in serial out shift register.	(10 Marks)
)	b.	Explain n bit parallel adder with accumulator.	(10 Marks)
	υ.	Explain if oil paramet adder with accommon	
		OR	
10	a.	Design and explain mod 8 synchronous counter using JK flip flop.	(10 Marks)
10		Explain how moore transition and states can be constructed with examples.	(10 Marks)
	b.	Explain now mode transition and states can be constructed with stampes.	

(A)