Acharys Institutes

17MATDIP41

Fourth Semester B.E. Degree Examination, July/August 2022 Additional Mathematics – II

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Find the rank of a matrix $A = \begin{bmatrix} 1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -1 & 6 \end{bmatrix}$ by reducing to echelon form. (07 Marks)
 - b. Use Cayley-Hamilton theorem to find the inverse of a matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$. (07 Marks)
 - c. Solve the following system of equation of Gauss Elimination method:

$$x + y + z = 9$$
$$x - 2y + 3z = 8$$

2x + y - z = 3.

OR

2 a. Test for consistency and solve

$$5x_1 + x_2 + 3x_3 = 20$$

 $2x_1 + 5x_2 + 2x_3 = 18$

$$3x_1 + 2x_2 + x_3 = 14$$
.

(07 Marks)

(06 Marks)

b. Find all the Eigenvalues of the matrix

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

(07 Marks)

c. Find the rank of the matrix
$$A = \begin{bmatrix} 2 & 3 & 4 \\ -1 & 2 & 3 \\ 1 & 5 & 7 \end{bmatrix}$$
.

(06 Marks)

Module-2

3 a. Solve $\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 8y = 0$.

(07 Marks)

b. Solve $y'' - 4y' + 13y = \cos 2x$.

(07 Marks)

c. Solve
$$\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^3$$

(06 Marks)

OR

- a. Solve by the method of variation of parameters, y" 2y' + y = ex.logx.
 b. Solve by the method of undetermined coefficients (D² + 1)y = sinx.
- (07 Marks) (07 Marks)

c. Solve $\frac{d^2y}{dx^2} - 4y = 3^x$.

(06 Marks)

Module-3

Find the Laplace transform of $cost \times cos2t.cos3t$.

(07 Marks)

Find the Laplace transform of e^{3t} sin5t.sin3t.

(07 Marks)

Find the Laplace transform of t³ sint.

(06 Marks)

OR

- If f(t) is a periodic function of period T > 0, then prove that $L\{f(t)\} = \frac{1}{1 e^{-sT}} \int_{0}^{t} e^{-st} f(t) dt$.
 - (07 Marks)
 - Find the Laplace transform of f(t) = Esinwt, $0 < t < \pi/w$ having period π/w .
- (07 Marks)

- cost
- Express $f(t) = \cos 2t$ $\pi < t < 2\pi$ as a unit step function and hence find its Laplace cos3t
 - transform.

(06 Marks)

- Find the Laplace of $\frac{1}{(s-1)(s+1)(s+2)}$ (07 Marks)
 - Solve y''' + 2y'' y' 2y = 0 given y(0) = y'(0) = 0 and y''(0) = 6 by using Laplace transform.
 - c. Find: $L^{-1} \left[\frac{3s+2}{(s-2)(s+1)} \right]$. (06 Marks)

8 Find $L^{-1}[\cot^{-1}(s/a)]$.

- (07 Marks)
- Employ Laplace transform to solve the equation $y'' + 5y' + 6y = 5e^{2x}$, y(0) = 2, y'(0) = 1.
- Find the inverse Laplace transform of log (06 Marks)

Module-5

State and prove Bayes theorem.

(07 Marks)

- Prove that
 - $P(A \cup B \cup C) = P(A) + P(B) + P(C) + P(A \cap B \cap C) P(A \cap B) P(B \cap C) P(C \cap A).$ (07 Marks)
 - c. A pair of dice is tossed twice. Find the probability of scoring 7 points
 - i) Once
- ii) atlesat once iii) twice.

(06 Marks)

- a. If A and B are two events having P(A) = 1/2, P(B) = 1/3 and $P(A \cap B) = 1/4$ compute
 - i) P(A/B)
- ii) P(B/A)
- iii) P(A/B).

- (07 Marks)
- b. Three machines A, B and C produce respectively 60%, 30%, 10% of the total number of items of a factory. The percentage of defective output of these machines are respectively 2%, 3% and 4%. An item is selected at random and is found defective. Find the probability that the item was produced by machine C. (07 Marks)
- c. In a school 25% of the students failed in first language, 15% of the students failed in second language and 10% of the students failed in both. If a student is selected at random find the probability that.
 - He failed in first language if he had failed in the second language. i)
 - He failed in second language if he had failed in the first language. ii)
 - He failed in either of the two languages.

(06 Marks)