L	ior	arian	
Learning	Re	source	Centre
Acharya Institutes			

USN

18MAT11

First Semester B.E. Degree Examination, July/August 2022 Calculus and Linear Algebra

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

- a. With usual notations prove that $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$. (07 Marks)
 - Find the angle of intersection of the curves $r = \sin\theta + \cos\theta$ and $r = 2\sin\theta$. (06 Marks)
 - c. Find the radius of curvature at any point on the curve $y^2 = \frac{a^2(a-x)}{x}$. Where the curve meets x-axis. (07 Marks)

- Show that the pair of curves $r^n = a^n \cos n\theta$ and $r^n = b^n \sin n\theta$ intersect orthogonally. 2
 - (06 Marks) (06 Marks)
 - Find the pedal equation of the curve $r^m cosm\theta = a^m$. Show that the evolute of the parabola $y^2 = 4ax$ is $27ay^2 = 4(x-2a)^3$. (08 Marks)

- Find the Maclaurin's series of Log (secx) upto the terms containing x⁴. 3 (07 Marks)
 - $\underset{x \to 0}{\text{Lt}} \left[\underbrace{\frac{a^x + b^x + c^x + d^x}{4}} \right]^{1/x}.$ (06 Marks)
 - Find the extreme values of $f(x, y) = x^4 + y^4 2x^2 + 4xy 2y^2$ (07 Marks)

- a. If u = f(r, s, t) where $r = \frac{x}{v}$, $s = \frac{y}{z}$, $t = \frac{z}{x}$ prove that $x \cdot \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial y} + z \cdot \frac{\partial u}{\partial z} = 0$. (07 Marks)
 - b. If x, y, z are the angles of a triangle, find the maximum values of cosxcosycosz. (07 Marks)
 - c. If $u = x^2 + y^2 + z^2$, v = xy + yz + zx, w = x + y + z find $J\left(\frac{uvw}{xyz}\right)$. (06 Marks)

Module-3

- a. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dxdydz$. (07 Marks)
 - b. Evaluate $\int_{0}^{4a} \int_{0}^{2\sqrt{ax}} dy dx$ by changing the order of integration. (06 Marks)
 - c. Prove that $\beta(m, n) = \frac{\Gamma(m).\Gamma(n)}{\Gamma(m+n)}$ (07 Marks)

- Evaluate $\iint xydxdy$ over the positive quadrant of the circle $x^2 + y^2 = 4$. (07 Marks)
 - Find the volume of the region bounded by $z = x^2 + y^2$, z = 0, x = -a, x = a and y = -a, y = a.
 - c. Show that $\int\limits_0^{\pi/2} \frac{d\theta}{\sqrt{\sin\theta}} \times \int\limits_0^{\pi/2} \!\! \sqrt{\sin\theta} \ d\theta = \pi \, .$ (07 Marks)

a. Solve $(5x^4 + 3x^2y^2 - 2xy^3)dx + (2x^3y - 3x^2y^2 - 5y^4) dy = 0$. (06 Marks)

b. Solve $\frac{dy}{dx} + y \tan x = y^2 \sec x$. (07 Marks)

c. A body in air at 80°C cools down to 60°C in 20 minutes, the temperature of the air being 40°C what will be the temperature of the body after 40 min. (07 Marks)

- Solve $(5x^3 + 12x^2 + 6y^2)dx + 6xydy = 0$. (07 Marks)
 - Solve $xp^2 yp + a = 0$. Also find its singular solution. (06 Marks)
 - c. Find the orthogonal trajectories of the family of curves $r = a(1-\cos\theta)$. (07 Marks)

9 a. Find the rank of the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$$
 using elementary row transformations.

b. Find the largest eigen value and the corresponding eigen vector of the matrix

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
 with initial vector $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^1$. Carry out 6 iterations. (07 Marks)

c. Solve the following system of equations by Gauss elimination method.

$$2x - 3y + z = 9$$
, $x + y + z = 6$, $x - y + z = 2$. (07 Marks)

OR

a. Apply Gauss Jordan method to solve the system of equations.

$$2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16.$$
 (06 Marks)

- b. Reduce the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ into diagonal form. (07 Marks)
- c. Solve the following system of equations by Gauss-Seidal method: 20x + 2y - 2z = 17, 3x + 20y - z = -18, 2x - 3y + 20z = 25 carry out 5 iterations. (07 Marks)