Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

USN					=					
-----	--	--	--	--	---	--	--	--	--	--

17ELN15/25

First/Second Semester B.E. Degree Examination, July/August 2022 **Basic Electronics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain the V-I characteristics of p-n junction diode. (08 Marks)
 - b. With neat circuit diagram and waveform explain the working of full wave bridge rectifier.

 (08 Marks)
 - c. Derive the relationship between α and β . Also calculate the α value and β value of a transistor. If $I_{\beta} = 100 \mu A$ and $I_{C} = 2 m A$. (04 Marks)

OR

- 2 a. With a neat diagram, explain the Input-Output characteristics of a transistor in common base configuration. (08 Marks)
 - b. With neat circuit diagram and waveforms, explain the working of a half-wave rectifier.
 - c. Explain briefly capacitor filter circuit.

(08 Marks) (04 Marks)

Module-2

- 3 a. Explain the characteristic of Ideal operational amplifier. (06 Marks)
 - b. What is DC load line? Explain with neat circuit the operation of voltage divider bias circuit.

 (08 Marks)
 - c. Derive the output expression of Op-Amp differentiator.

(06 Marks)

OR

- 4 a. Calculate the output voltage of a three input inverting summing amplifier, given $R_1 = 200 K\Omega$, $R_2 = 250 K\Omega$, $R_3 = 500 K\Omega$, $R_f = 1 M\Omega$, $V_1 = -2 V$, $V_2 = -1 V$ and $V_3 = +3 V$.
 - b. For the circuit shown in Fig.Q.4(b) find the Q-point values and draw DC-load line, where $V_{BE} = 0.7V$ and $\beta = 50$. (06 Marks)

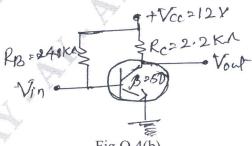


Fig.Q.4(b)

c. Explain briefly inverting and non-inverting operational amplifiers.

(08 Marks)

Module-3

5	a.	Convert:	
		i) $(1101101)_2 = (?)_{10}$ and $(101.01)_2 = (?)_{10}$	
		ii) $(48350)_{10} = (?)_{16} = (?)_8$	
		iii) $(FA876)_{16} = (?)_8 = (?)_{10}$	
		iv) $(237)_8 = (?)_{16} = (?)_{10}$.	(08 Marks)
	b.	Perform the subtraction:	
		i) $(22-17)_{10}$ by using 1's complement.	
		ii) $(11010)_2 - (10000)_2$ by using 2's complement.	(04 Marks)
	C.	State and prove De-Morgan's theorems.	(08 Marks)
		A V	
		OR	
6	a.	Explain the full adder circuit with circuit diagram, truth table.	(05 Marks)
	b.	What are universal gates? Realize AND and OR gates using NAND gates.	(05 Marks)
	c.	Simplify: $y = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$.	(05 Marks)
	d.	Draw and explain half adder circuit.	(05 Marks)
		Module-4	
7	a.	Explain the operation of NOR Latch with symbol, circuit diagram and truth table.	(06 Marks)
	b.	Explain with neat block diagram architecture of 8051 microcontroller.	(08 Marks)
	c.	Explain the working of clocked RS-flip flop using NAND-gates.	(06 Marks)
		OR	
8	a.	Write a note on NAND-gate latch.	(06 Marks)
	b.	With the help of block diagram, explain the microcontroller based stopper mo	otor control
		system.	(08 Marks)
	c.	Explain R-S flip-flop with diagram and truth table.	(06 Marks)
		Module-5	(0.63.6.1.)
9	a.	With the help of block diagram, explain the communication system.	(06 Marks)
	b.	Define Modulation. Derive mathematical expression for amplitude modula	ition, draw
		waveforms.	(06 Marks)
	C.	Explain the construction and working principle of LVDT.	(08 Marks)
		OD	
		OR	oidal cianal
10	a.	A carrier of 1MHz, with 400W of its power is amplitude modulated with a sinus	Randwidth
		of 2500Hz. The depth of modulation is 75%. Calculate the side band frequency,	(06 Marks)
		the power in the side bands and the total power in the modulated wave.	
	b.	List the differences between Amplitude Modulation and frequency modulation.	(06 Marks)