

USN

18MT34

Third Semester B.E. Degree Examination, July/August 2022 Control Systems

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Compare Open Loop and Closed Loop control system.

(10 Marks)

b. Explain and generate equations for force voltage and force current analogy.

(10 Marks)

OR

Explain the block diagram reduction techniques or rules with illustration and the basic procedure to solve them. (20 Marks)

Module-2

- 3 a. Define the following terms with respect to signal flow graphs.
 - i) Source Node
 - ii) Sink node
 - iii) Forward path
 - iv) Feedback loop

v) Loop gain with a Sample SFG diagram. (10 Marks)

b. Draw the SFG and hence determine overall transfer function of the block diagram shown in Fig.Q3(b).

Fig.Q3(b)

(10 Marks)

OR

4 a. What is a Standard Test Input? What are the 4 types of it? Explain.

(10 Marks)

Prove that output = $(1 - e^{-iT})$ for a step input in first order system.

(10 Marks)

Module-3

- 5 a. What do you mean by stable system and locate the roots on S-plane for the stable, unstable and marginally stable conditions with nature of roots that exist. (10 Marks)
 - b. Check the stability of the system having CE $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$.

(10 Marks)

OR

- a. $s^6 + 4s^5 + 3s^4 16s^2 64s 48 = 0$. Find the number of roots of this equation with the real parts, zero real part and -ve real part. (10 Marks)
 - Derive an expression for resonant peak "M_p" for a second order system.

(10 Marks)

Module-4

. Determine value of 'k' Sketch Bode plot the transfer function : G(s) =7 for gain cross over frequency to be 5 rad s⁻¹. (20 Marks)

OR

Sketch the complete root locus for the system having $G(s)H(s) = \frac{K}{s(s+3)(s^2+3s+11.25)}$ 8 (20 Marks)

Module-5

- Define state variable, state vector, state space and state trajectory. (08 Marks)
 - Derive transfer function from the state model. (08 Marks)
 - (04 Marks) What are the applications of state model?

- (08 Marks) a. What are the properties of state transition matrix?
 - b. A 2nd order system is obtained by $\frac{d^2y}{dt^2} + \frac{2dy}{dt} + 2y(t) = u(t)$. Obtain the state transition (12 Marks) matrix.