

CBCS SCHEME

15MT34

Third Semester B.E. Degree Examination, July/August 2022 **Control System**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain with an example and block diagram, a closed loop control system. (06 Marks)
 - Obtain the transfer function for the following mechanical system shown in Fig.Q.1(b).

(10 Marks)

OR

For the given system shown in Fig.Q.2(a), write the differential equations in force voltage and force-current analogy.

Fig.Q.2(a)

Reduce the block diagram shown in Fig.Q.2(b) by reduction technique and find C(s)/R(s).

Fig.Q.2(b)

(10 Marks)

Module-2

What is signal-flow graph representation? Briefly explain the properties of signal flow 3 (06 Marks) graph.

b. Obtain the closed loop transfer function $\frac{C(s)}{R(s)}$ for the signal flow graph of a system show in (10 Marks)

Fig.Q3(b) using Mason's gain formula.

Fig.Q3(b)

OR

- Derive expressions for peak time tp and peak over shoot Mp of an under damped second (06 Marks) order control system subjected to step input.
 - b. A unity feedback system is characterized by an open loop transfer function $G(S) = \frac{K}{s(s+10)}$ Determine the gain K so that the system will have a damping ratio of 0.5. For this value of K determine the peak time and peak overshoot for a unit step input. (06 Marks)
 - For a unity feedback control system with $G(S) = \frac{40(S+2)}{S(S+1)(S+4)}$. Determine all static error (04 Marks) coefficients

Module-3

- Using Routh criteria determine stability of following systems: 5
 - Its loop transfer function has poles at S = 0, S = -1, S = -3 and zero at S = -5, (i) gain of K of forward path is 10.
 - It is a type one system with an error constant of 10 sec⁻¹ and poles at S = -3 and S = -6
 - b. Determine the stability of the system having the characteristic equation using R-H criterion. $s^6 + 2s^5 + 5s^4 + 8s^3 + 8s^2 + 8s + 4 = 0$ (06 Marks)

OR

Draw the root locus diagram for the loop transfer function, $G(s)H(s) = \frac{K}{s(s^2 + 8s + 17)}$. 6 Evaluate the value of K for a system having damping ratio of 0.5 from the diagram. (16 Marks)

Module-4

- List the advantage and limitations of frequency domain approach. (04 Marks)
 - For a control system having $G(S) = \frac{K(1+0.55)}{S(1+2S)(1+0.05S+0.125S^2)}$ -draw Bode plot, with

K = 4 and find gain margin and phase margin.

(12 Marks)

- State and explain Nyquist stability criterion. (04 Marks)
 - b. For the given system $G(S)H(S) = \frac{10}{S^2(1+0.25S)(1+0.5S)}$ (12 Marks)

Module-5

- Define state variable and state transition matrix. List the properties of the state transition (08 Marks) matrix.
 - b. Obtain the state model for the electrical system shown in Fig. Q9 (b) choosing the state (08 Marks) variables as $i_1(t)$, $i_2(t)$ and $V_c(t)$

OR

Obtain the state transition matrix for A =

(08 Marks)

b. Obtain the solution of the homogeneous state equation, X = AX where $A = \begin{bmatrix} 1 & -2 \\ 1 & -4 \end{bmatrix}$ and

$$X(0) = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix}.$$

(08 Marks)