CBCS SCHEME

USN

15MT35

Third Semester B.E. Degree Examination, July/August 2022 Analog and Digital Electronics

Time: 3 hrs.

Max. Marks:80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain the V-I characteristics of an Ideal diode, silicon diode, Germanium diode and zener diode. (08 Marks)
 - b. Explain junction diode models with necessary equivalent circuits.

(08 Marks)

OF

- 2 a. Explain, with diagrams, how a pn-junction diode can be used as a switch. (06 Marks)
 - b. Explain how the capacitor filter reduces the ripple in rectifier circuit.

(06 Marks)

- c. The input voltage of centre tapped full wave rectifier is 10 V (rms). The sum of the dc resistance of the transformer winding and forward dc resistance of the diode is $Rs = 0.2\Omega$, the load resistance $R_L = 10\Omega$ and forward diode drop $V_D = 0.7 \text{ V}$, Find:
 - i) Peak load current
 - ii) DC load current.
 - iii) Individual diode de current.
 - iv) DC output voltage.
 - v) PIV.

(04 Marks)

Module-2

- 3 a. Explain first order low pass Butterworth filter and derive the gain and phase angle equations.
 (08 Marks)
 - b. Design a wide band pass filter with fL = 200hz, fH = 1KHz
 - i) passband gain = 4
 - ii) draw the frequency response of the filter
 - iii) calculate the value of Q for the filter.

(08 Marks)

OR

- a. Explain second order high pass Butterworth filter with necessary circuit diagram and equations. (04 Marks)
 - b. Design Wein bridge oscillator for the Fig.Q4(b) below so that $f_0 = 965$ hz.

(04 Marks)

Fig.Q4(b)

c. State Backhausen criterion for sustained oscillations and explain phase shift oscillator with necessary circuit and equations. (08 Marks)

(08 Marks)

(08 Marks)

Module-3 With the help of circuit diagram explain op-amp as a basic comparator and zero crossing 5 b. Explain the operation of a inverting Schmitt trigger. Draw its input and output waveforms. (08 Marks) Explain the operation of a monostable multivibrator and its applications. Draw its input (08 Marks) output waveforms. b. Explain the operation of 555 timer as a Astable multivibrator with circuit diagram and its (08 Marks) applications. Module-4 Draw Rs latch with NAND and NOR gate circuit. (04 Marks) b. Explain clocked master0slave JK flip-flop with necessary logic circuit. (06 Marks) Explain bi – directional shift register with parallel load. (06 Marks) Explain 3 – bit synchronous – Binary up-down counter. (08 Marks) 8 Explain how read and write information transfer takes place in magnetic core-memory. (08 Marks) Module-5 What is multiplexer? Realize 4:1 multiplexer using basic gates and write its truth table. Explain the operation of R-2R DAC. And also drive the expression of output voltage. (08 Marks) What is decoder? Realize 2 to 4 line decoder using basic gates and write its truth table. 10

* * * * *

Explain the operation of a successive approximation ADC.