USN				1		
				- 6		

17MN34

Third Semester B.E. Degree Examination, July/August 2022 Mechanics of Materials

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. A rod 150cm long and diameter 2.0cm is subjected to an axial pull of 20kN. If the modulus of elasticity of the material of the rod is $2 \times 10^5 \text{N/mm}^2$, determine: the stress, the strain and the elongation of the rod. (06 Marks)
 - b. Prove that the total extension of a uniformly tapering rod of diameter D_1 and D_2 , when the rod is subjected to an axial load P is given by $dL = \frac{4PL}{\pi E D_1 D_2}$. (14 Marks)

OR

- a. A steel tube of 30mm external diameter and 20mm internal diameter encloses a copper rod of 15mm diameter to which it is rigidly joined at each end. If at a temperature of 10°C there is no longitudinal stress, calculate the stresses in the rod and tube when the temperature is raised to 200°C. Take E for steel and copper as $2.1 \times 10^5 \text{N/mm}^2$ and $1 \times 10^5 \text{ N/mm}^2$ respectively. The value of co-efficient of linear expansion for steel and copper is given as 11×10^{-6} per °C and 18×10^{-6} per °C respectively. (14 Marks)
 - b. Find an expression for the total elongation of a bar due to its own weight. (06 Marks)

Module-2

- A body is subjected to direct stresses in two mutually perpendicular directions accompanied by a simple shear stress.
 - a. Draw the Mohr's circle of stresses.

(10 Marks)

b. Explain how you will obtain the principal stresses, principal planes, maximum shear stress and maximum shear plane. (10 Marks)

OR

- a. Determine the Poisson's ratio and bulk modulus of a material, for which Young's modulus is $1.2 \times 10^5 \text{N/mm}^2$ and modulus of rigidity is $4.8 \times 10^4 \text{ N/mm}^2$. (05 Marks)
 - b. Calculate: the change in diameter, change in length and change in volume of a thin cylindrical shell 100cm diameter, 1cm thick and 5m long when subjected to internal pressure of $3N/mm^2$. Take the value of $E = 2 \times 10^5 N/mm^2$ and Poisson's ratio, $\pi = 0.3$. (15 Marks)

Module-3

- 5 a. What are the different types of beams? Differentiate between a cantilever and a simply supported beam. (08 Marks)
 - b. Draw the S.F. and B.M. diagrams for a cantilever of length L carrying a uniformly distributed load of W per unit length over its entire length. (12 Marks)

What are the different types of loads acting on a beam?

(06 Marks)

Draw the S.F. and B.M. diagrams for the beam which is loaded as shown in Fig.Q.6(b). Determine the points of contraflexure within the span AB.

Fig.Q.6(b)

(14 Marks)

Module-4

- A circular beam of 100mm diameter is subjected to a shear force of 5kN. Calculate average shear stress, maximum shear stress and shear stress at a distance of 40mm from N.A. (10 Marks)
 - b. Prove that relation: $\frac{M}{I} = \frac{\sigma}{v}$

where M = Bending moment

= Moment of inertia 4. I

= Bending stress

= distance from N.A.

E = Young's modulus

R = Radius of curvature

(10 Marks)

OR

- A beam of uniform rectangular section 200mm wide and 300mm deep is simply supported at 8 its ends. It carries a uniformly distributed load of 9kN/m run over the entire span of 5m. if the value of E for the beam material is 1 × 10⁴N/mm². Find the slope at the supports and maximum deflection.
 - b. Derive an expression for the slope and deflection of a cantilever of length L, carrying a point (10 Marks) load W at the free end by double integration method.

Module-5

a. Derive the relation for a circular shaft when subjected to torsion as given below:

(16 Marks)

b. In a hallow circular shaft of outer and inner diameters of 20cm and 10cm respectively, the shear stress is not to exceed 40N/mm². Find the maximum torque which the shaft can safety (04 Marks) transmit.

OR

- A 2 meters long column has a square cross-section of side 40mm. Taking the fos as 4, 10 determine the safe load for the end conditions,
 - Both ends are hinged i)
 - One end is fixed and other end is free ii)
 - Both ends are fixed iii)
 - One end is fixed and other end is hinged iv)

Take E = 210GPa.

(20 Marks)