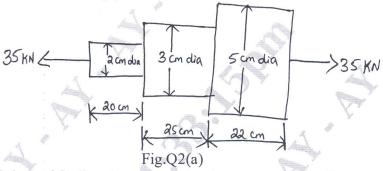
Third Semester B.E. Degree Examination, July/August 2022 **Mechanics of Materials**

Time: 3 hrs.

Max. Marks: 80


Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

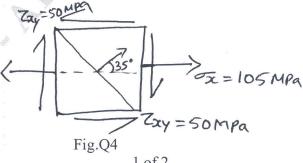
Define the terms: elasticity, elastic limit, Young's modulus and modulus of rigidity.

Find an expression for the total elongation of a uniformly tapering rectangular bar when it is subjected to an axial load 'P'

- An axial pull of 35 kN is acting on a bar consisting of three lengths as shown in Fig.Q2(a). If a Young's modulus = 2.1×10^5 N/mm², determine:
 - (i) Stresses in each section
- (ii) Total extension of the bar.

What is the procedure of finding thermal stresses in a composite bar?

(12 Marks) (04 Marks)


Module-2

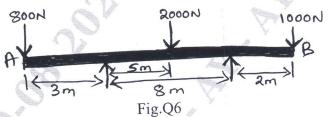
Calculate the change in diameter, change in length and change in volume of a thin cylindrical shell 100 cm diameter, 1 cm thick and 5m long when subjected to internal pressure of 3 N/mm². Take the value of $E = 2 \times 10^5$ N/mm² and Poisson's ratio, $\mu = 0.3$.

(12 Marks)

b. Determine the Poisson's ratio and bulk modulus of a material, for which Young's modulus is 1.2×10^5 N/mm² and modulus of rigidity is 4.8×10^4 N/mm².

- An element is subjected to the stresses shown in Fig.Q4. Using the Mohr's circle, determine:
 - Maximum and minimum stresses and orientations of their planes.
 - Stress acting on a plane whose normal is at an angle of 35° with respect to x-axis. (04 Marks)

1 of 2


Module-3

Define shear force, bending moment, shear force diagram and bending moment diagram.

b. Draw the S.F and B.M diagrams for a cantilever of length L carrying a uniformly distributed load of ω per m length over its entire length.

OR

Draw the S.F. and B.M. diagrams for the beam which is loaded as shown in Fig.Q6. 6 Determine the points of contraflexure within the span AB.

(16 Marks)

Module-4

- A beam of uniform rectangular section 200 mm wide and 300 mm deep is simply supported at its ends. It carries a uniformly distributed load of 9 kN/m run over the entire span of 5m. If the value of E for the beam material is 1×10^4 N/mm². Find the slope at the supports and (08 Marks) maximum deflection.
 - b. Prove that relation $\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$

(08 Marks)

A circular beam of 100 mm diameter is subjected to a shear force of 5 kN. Calculate average shear stress, maximum shear stress and shear stress at a distance of 40 mm from N.A. (08 Marks)

b. Derive an expression for the slope and deflection of a cantilever of length L, carrying a point (08 Marks) load W at the free end by double integration method.

Module-5

Derive the relation for a circular shaft when subjected to torsion as given below: 9

$$\frac{T}{J} = \frac{\tau}{R} = \frac{GG}{L}$$

(16 Marks)

- A 2 meters long column has a square cross-section of side 40 mm. Taking the FOS as 4, 10 determine the safe load for the end conditions:
 - Both ends are hinged.
 - One end is fixed and other end is free.
 - (iii) Both ends are fixed.
 - (iv) One end is fixed and other end is hinged.

Take E = 210 GPa.

(16 Marks)