1 -	Libra	arian		CBCS) SCI
	Parning Res Achanya	iource Co Institutes	entre		

18ME46B/18MEB406

Fourth Semester B.E. Degree Examination, July/August 2022 Mechanical Measurements and Metrology

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain international prototype meter with a neat sketch. (06 Marks)

b. Four length bars A, B, C and D each having a basic length 125 mm are to be calibrated using a calibrated length bar of 500 mm basic length. The 500 mm bar has an actual length of 499,9991 mm. Also, it was found that

 $L_{\rm B} = L_{\rm A} + 0.0001 \text{ mm}$

 $L_C = L_A + 0.0005 \, \text{mm}$

 $L_{\rm D} = L_{\rm A} - 0.0002 \, \text{mm}$

and $L_A + L_B + L_C + L_D = L + 0.0003 \text{ mm}$

Determine L_A , L_B , L_C and L_D (08 Marks)

c. Define a standard. Write a note on wavelength standards.

(06 Marks)

OR

2 a. Explain sine centre with a neat sketch.

(06 Marks)

b. Explain the principle and construction of Auto collimator with a neat diagram.

(14 Marks)

Module-2

3 a. Define the terms:

(i) Limits

(ii) Fits

(iii) Fundamental deviation

(iv) Tolerance

(v) Allowance

(vi) Basic size

(06 Marks)

b. Determine the actual dimensions to be provided for a shaft and hole of 90 mm size for H_8C_9 type clearance fit. Given Diameter steps are 80 mm and 100 mm,

 $i = 0.45 \sqrt[3]{D} + 0.001D$,

Value of tolerances for IT8 = 25i and for IT9 = 40i

and Fundamental Deviation for 'C' type shaft $F.D = -11D^{0.41}$

and also design the GO and NOGO gauges, considering wear allowance.

(14 Marks)

OR

a. Explain the construction and working of Sigma Comparator with a neat sketch. (10 Marks)

b. Explain Solex Pneumatic Comparator with a neat sketch.

(10 Marks)

Module-3

5 a. Explain Toolmaker's microscope with a neat sketch. (14 Marks)

b. Define Best Size Wire. Derive an expression for the same.

(06 Marks)

OR

6 a. Explain the measurement of gear tooth thickness using constant chord method. (10 Marks)

b. Explain the Gear tooth Vernier Caliper with a neat sketch.

(10 Marks)

18ME46B/18MEB406

			Module-4	
	7	a.	Explain Generalized measurement system with a Block Diagram.	(12 Marks)
		b.	Define: (i) Accuracy (ii) Precision (iii) Threshold (iv) Hysteresis	(08 Marks)
			OR	
	8	a.	Define Transfer Efficiency. Explain Ionisation transducer with a neat sketch.	(07 Marks)
	U	b.	Classify Transducers. Explain Resistive transducers with a neat sketch.	(13 Marks)
			Module-5	(10.35 1.)
	9	a.	Explain Equal arm balance for force measurement.	(12 Marks) (08 Marks)
		b.	Explain Prony brake dynamometer with a neat sketch.	(Uo IVIAI KS)
			OR	
	10	a.	Explain Mc Leod gauge with a neat sketch.	(10 Marks)
		b.	Define thermocouple. State the laws of thermocouple and explain.	(06 Marks)
		c.	Explain the theory of strain gauges and define gauge factor.	(04 Marks)
			* * * * * *	
			A G.V	
			A A A A A A A A A A A A A A A A A A A	
_				
			X	
			2 of 2	