Librarian Learning Resource Centre		SSCHEM	
NSNarya Institutes			

15EE71

Seventh Semester B.E. Degree Examination, July/August 2022 **Power System Analysis - II**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. With usual notations, prove that $Y_{BUS} = A^{T}[Y]A$ using singular transformation. (06 Marks)
 - b. For the data given in table Q1(b), obtain Y_{BUS} using singular transformation.

Element No	From Bus	To Bus	Self Impedance (pa)	Mutual Impedance (pu)
1	0	1	- 0.2 j	-
2	1	2	0.05 j	-
3	2	3	0.04 j	0.2 j (with 2)
. 4	3	1	0.02 j	-

Table: Q1(b)

(10 Marks)

OR

a. For the 3 – bus system shown in Fig. Q2(a), estimate the voltages at bus 2 and bus 3 at the end of first iteration using G.S method. The values of data required for load flow is listed in table Q2(a). The reactive power limits at bus 2 is - 0.5 ≤ Q2 ≤ 0.5 p.u. (10 Marks)

Bus No	P _i (pu)	Q _i (pu)	$ V_i $ (pu)	δ_{i}	Type
1 /		-	1.05	0	Slack
2	0.3	-	1.02	_	PV
3	-1.4	- 0.5	-	-	PQ

Table: Q2(a)

b. Explain how buses are classified to carry out load flow analysis in power system. (06 Marks)

Module-2

3 a. With all assumption, deduce FDLF model and give flow chart.

(10 Marks)

b. Compare Gauss – Seidal and Newton – Raphson methods of load flow analysis.

(06 Marks)

OR

4 a. Derive expression for all elements of Jacobian matrices on Polar form.

(10 Marks)

b. Explain any two method of control of voltage profile.

(06 Marks)

Module-3

5 a. With a usual notation, derive generalized transmission loss formula and B – Coefficients.

(10 Marks)

- b. The operating cost of C_1 and C_2 in Rs/hr of two generator units each of 100MW rating of a thermal plant are : $C_1 = 0.2 \ P_1^2 + 40 \ P_1 + 120 \ Rs/hr$; $C_2 = 0.25 \ P_2^2 + 30 \ P_2 + 150 \ Rs/hr$
 - i) Find optimal generation of 2 units for a total demand of 180 MW and corresponding total cost.
 - ii) Savings in Rs/hr in the case, as compare to equal sharing between two machines.

(06 Marks)

(04 Marks)

OR

6 a. Calculate the loss coefficient in pu and MW⁻¹ on a base of 50 MVA for the network shown in Fig. Q6(a) below:

$$\begin{split} &I_a=1.2-j0.4 \quad , \quad I_b=0.4-j0.2 \quad , \quad I_c=0.8-j0.1 \quad , \quad I_d=0.8-j0.2 \quad , \quad I_e=1.2-j0.3 \quad , \\ &Z_a=0.02+j0.08 \quad , \quad Z_b=0.08+j0.32 \quad , \quad Z_c=0.02+j0.08 \quad , \quad Z_d=0.03+j0.12 \quad , \\ &Z_e=0.03+j0.12 \quad , V_{ref}=1\,|0 \quad . \end{split} \label{eq:constraints}$$

- b. Explain the following:
 - i) Input Output curve ii) Heat rate curve related to thermal plants. (06 Marks)

Module-4

- 7 a. With the block diagram, explain system static level classification. (08 Marks)
 - b. Discuss the solution procedure of optimal scheduling of Hydrothermal plants. (08 Marks)

OR

- 8 a. Explain the following: i) Loss of Load Probability (LOLP).
- ii) Frequency and duration of state (FAD).
 - b. With the help of bath tub curve, explain Power System Reliability. (04 Marks)
 - c. With the help of flow chart, explain Optimal load flow solution. (08 Marks)

Module-5

- 9 a. Explain Solution of Swing equation by Point by Point method. (08 Marks)
 - b. Derive the generalized algorithm for finding the elements of bus impedance matrix Z_{bus} when a branch is added to the partial network. (08 Marks)

OR

10 a. For the three – bus network shown in Fig. Q10(a), build Z_{bus}. (10 Marks)

Fig. Q10(a) jo. 25 Fig. Q10(a)

b. Explain solution of swing equation by Range – Kutta 4th Order method. (06 Marks)