15EE35

Third Semester B.E. Degree Examination, July/August 2022 Digital System Design

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define combinational logic. List out the various steps in designing a combinational logic circuit. (04 Marks)
 - b. Distinguish prime implicante and essential prime implicante. Determine the same of the function using K –maps $f(w, x, y, z) = \sum m(0, 2, 5, 7, 8, 10, 13, 15)$. Hence the minimal sum expression.
 - c. Design a logic circuit with inputs A, B and C so that output Y is high, whenever A is zero or whenever B = C = 1 using only two input NAND gates. (04 Marks)

OR

2 a. Obtain minimal product of the Boolean function using VEM technique

 $X = f(a, b, c) = \Sigma_m(0, 1, 4, 5, 7).$

(04 Marks)

b. Simplify the function using K – maps

 $T = f(a, b, c, d) = \Sigma_m(1, 3, 4, 5, 13, 15) + \Sigma_d(8, 9, 10, 11).$

(04 Marks)

 Simplify the function using Quine McCluskey techniques and realize the simplified function using NOR gates

$$f(a, b, c, d) = \Sigma_m = (7, 9, 12, 13, 14, 15) + \Sigma_d(4, 11).$$

(08 Marks)

Module-2

- a. Design a combinational circuit to convert BCD number to Excess-3 BCD number as following:
 - i) Construct the truth table
 - ii) Simplify each output function and write the reduced equation
 - iii) Draw a logic diagram.

(10 Marks)

b. Design a 4 to 16 line decoder using 2 to 4 line decoder with active low enable and active low outputs.

(06 Marks)

OR

4 a. Design a binary full adder using minimum member of NAND gates. Write it truth tables.

(06 Marks)

- b. What is lookahead carry adder? Derive an expression for C_{out} for a four stage lookahead carry adder. (06 Marks)
- c. Implement the Boolean function using 4:1 multiplexer

$$Y = f(x, y, z) = \Sigma_m(1, 3, 5, 6).$$

(04 Marks)

Module-3

- 5 a. Differentiate sequential logic circuit and the combinational logic circuit.
 - b. Explain with timing diagram, the working operation of SR Latch as a switch debouncer.

(06 Marks)

(04 Marks)

c. Obtain the characteristic equation of JK and D flipflops.

(06 Marks)

OR

- 6 a. With the help of logic diagram, explain the following with respect to the shift register
 - i) Parallel in and serial out
 - ii) Ring counter and twisted ring counter.

(08 Marks)

b. Design of a synchronous Mod - 6 counter using D - flip flops to count that sequence $0, 2, 3, 6, 5, 1, 0, \ldots$ used as state diagram. (08 Marks)

Module-4

- 7 a. With a suitable block diagram, explain the Mealy and Moore model, in a sequential circuit analysis. (06 Marks)
 - b. Analysis the following sequential circuit shown in Fig.Q7(b) and obtain
 - i) FlipFlop input and output equation
 - ii) Transition equation and table
 - iii) State stable
 - iv) Draw a state diagram.

(10 Marks)

OR

- 8 a. Write a note on construction of the state diagram with sequence detector. (08 Marks)
 - b. Draw the state diagram of Mealy machine whose output is 1, if the last three inputs were 010 assuming that the sequence could overlap. (08 Marks)

Module-5

9 a. Explain the structure of the VHDL modules with an examples.

(06 Marks)

b. Compare VHDL module and verilog module.

(04 Marks)

c. Mention the types of HDL description. Explain how a half adder can be modeled in VHDL in any one of the description method. (06 Marks)

OR

10 a. Explain the execution of signal assignment statements in HDL.

(06 Marks)

b. List the data types used in VHDL and Verilog.

(04 Marks)

c. Write verilog code for 2×1 multiplexer with an active low enable inputs.

(06 Marks)

* * * *