Librarian Learning Resource Centre Acharya Institutes	CBCS SCHEME	
USN		18EC61

Sixth Semester B.E. Degree Examination, July/August 2022 Digital Communication

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. What are the applications of Hilbert transform? Prove that a signal g(t) and its Hilbert transform $\hat{g}(t)$ are orthogonal over the entire time interval $(-\infty, \infty)$. (08 Marks)
 - b. For a binary sequence 0 1 0 0 0 0 0 0 1 0 1 1 construct :
 - i) RZ Bipolar format ii) Manchester format iii) B3ZS format iv) B6ZS format
 - v) HDB3 format.

(08 Marks)

c. Define Pre-envelope of a real valued signal. Given a band pass signal S(t), sketch the amplitude spectra of signal S(t), Pre-envelope $S_{+}(t)$ and Complex envelope $\widetilde{S}(t)$. (04 Marks)

OR

- 2 a. Express Bandpass signal S(t) in canonical form. Also explain the scheme for deriving the inphase and quadrature components of the band pass signal S(t). (08 Marks)
 - b. Derive the expression for the complex low pass representation of band pass systems.

(08 Marks)

c. Write a note on HDBN signaling.

(04 Marks)

Module-2

- a. Explain the geometric representation of set of M energy signals as linear combination of N orthonormal basis functions. Illustrate for the case N = 2 and M = 3 with necessary diagrams and expressions.

 (10 Marks)
 - b. Explain the Correlation receiver using product integrator and matched filter. (10 Marks)

X.

a. Using the Gram – Schmidt Orthogonalization procedure, find a set of orthonormal basis functions to represent the three signals $S_1(t)$, $S_2(t)$ and $S_3(t)$ shown in Fig. Q4(a). Also express each of these signals in terms of the set of basis functions. (12 Marks)

b. Show that for a noisy input, the mean value of the j^{th} correlator output X_j depends only on S_{ij} and all the correlator outputs X_j , $j=1,2,\ldots,N$ have a variance equal to the PSD $N_{0/2}$ of the additive noise process W(t).

Module-3

Derive the expression for error probability of binary PSK using coherent detection. (06 Marks)

b. Explain the generation and optimum detection of differential phase - shift keying, with neat (08 Marks) block diagram.

A binary data is transmitted over a microwave link at a rate of 10⁶ bits/sec and the PSD of noise at the receiver is 10⁻¹⁰ watts/Hz. Find the average carrier power required to maintain an average probability of error $P_e \le 10^{-4}$ for coherent binary FSK. What is the required channel (06 Marks) bandwidth? (Given erf (2.6) = 0.9998).

- With a neat block diagram, explain the non coherent detection of binary frequency shift 6 keying technique.
 - b. In a FSK system, following data are observed. Transmitted binary data rate = 2.5×10^6 bits/second PSD of zero mean AWGN = 10^{-20} Watts/Hz. Amplitude of received signal in the absence of noise = InV. Determine the average probability of symbol error assuming (08 Marks) coherent detection. (Given erf(2.5) = 0.99959).

c. What is the advantage of M - ary QAM over M - ary PSK system? Obtain the constellation of QAM for M=4 and draw signal space diagram.

Module-4

- With a neat block diagram, explain the digital PAM technique through band limited base band channels. Also obtain the expression for inter symbol interference. (08 Marks) (08 Marks)
 - State and prove Nyquist condition for zero ISI. With neat diagram and relevant expression, explain the concept of adaptive equalization.

(04 Marks)

- For a binary data sequence {d_n} given by 1 110 1001. Determine the precoded sequence, 8 transmitted sequence, received sequence and the decoded sequence.
 - b. Draw and explain the time domain and frequency domain of duo binary and modified (08 Marks) duo binary signal.
 - With neat diagram, explain the timing features pertaining to eye diagram and its (06 Marks) interpretation for base band binary data transmission system.

Module-5

- Explain the model of a Spread Spectrum digital Communication system. (08 Marks)
 - b. Explain the effect of dispreading on a narrow band interference in Direct Sequence Spread Spectrum System (DSSS). A DSSS signal is designed to have the power ratio $\frac{P_R}{P_N}$ at the

intended receiver is 10^{-2} . If the desired $E_b/N_0 = 10$ for acceptable performance determine the

minimum value of processing gain. What is a PN sequence? Explain the generation of maximum length (ML - Sequence). What

(04 Marks) are the properties of ML sequences?

OR

- With a neat block diagram, explain frequency Hopped Spread Spectrum Technique. Explain 10 (10 Marks) the terms Chip rate, Jamming Margin and Processing gain.
 - b. With a neat block diagram, explain the CDMA System based on IS 95. (10 Marks)