Librarian		
Learning Resource Cer Acharya Institutes	treGBGS	SCHEME

USN												15EC63
-----	--	--	--	--	--	--	--	--	--	--	--	--------

Sixth Semester B.E. Degree Examination, July/August 2022 **VLSI Design**

Time: 3 hrs. Max. Marks: 80

A 11.		iviax. Iv	Tarks. 60
	A	ote: Answer any FIVE full questions, choosing ONE full question from each m	o dul o
	1 🔻	oie. Answer any FIVE jun questions, choosing ONE jun question from each mi	vaute.
		Module-1	
1	a.	Derive an expression for I-V characteristics with neat diagram.	(10 Marks)
•	b.	Explain pseudo nMOS inverter and derive the dc characteristics graphically.	(06 Marks)
		2.1.p. and possible of my order and derive the de characteristics graphicarry.	(00 Marks)
		OR	
2	a.	Explain the steps of n-well CMOS fabrication process with neat diagrams.	(10 Marks)
	b.	Explain any two non-ideal IV effects in a MOSFET.	(06 Marks)
			,
		Module-2	
3	a.	Illustrate the schematic, stick diagram and layout for the Boolean expression	
		$Y = \overline{A + BC}$ (Implement using CMOS logic)	(10 Marks)
	b.	Define standard unit of capacitance. Calculate the standard value of capacitance	ce for MOS
		transistor in 5 µm, 2 µm and 1.2 µm technologies. Given	
		gate capacitance for 5 μ m = $4 \times 10^{-4} \text{ pF/}\mu\text{m}^2$,	
		gate capacitance for 2 μ m = $8 \times 10^{-4} \text{ pF/}\mu\text{m}^2$,	
		gate capacitance for 1.2 μ m = 16×10^{-4} pF/ μ m ² .	(06 Marks)
		OR	
4	a.	Derive an expression for the estimation of CMOS rise time delay and fall time de	
	1		(08 Marks)
	b.	Explain the λ -based design rules for CMOS technology with neat diagrams.	(08 Marks)
		Modulo 2	
5	a.	Find the scaling factors for : Module-3	
5	a.	(i) Saturation current	
		(ii) Current density	
	4	(iii) Power dissipation/unit area	
	1	(iv) Maximum operating frequency.	(08 Marks)
	b.	Describe Manchester carry-chain adder element.	(08 Marks)
		OR	
6	a.	Discuss the different bus architectures.	(08 Marks)
	b.	With a neat diagram explain 4×4 Barrel shifter.	(08 Marks)
_		Module-4	
7	a.	Realize NAND and NOR gate using Dynamic CMOS logic and explain its opera	
	b.	Explain the 4-way data selector (multiplexer) with Boolean equation and nMOS	(08 Marks)
	υ.	Explain the T-way data selector (multiplexer) with boolean equation and invios	vascu stick

- 7
 - Explain the 4-way data selector (multiplexer) with Boolean equation and nMOS based stick diagram. (08 Marks)

OR

- 8 a. Explain parity generator with the nMOS implementation of parity generator with stick diagram. (08 Marks)
 - b. Explain in detail the Generic Structure of FPGA architecture.

(08 Marks)

Module-5

- 9 a. Explain 3-transistor dynamic RAM cell with neat diagram. (08 Marks)
 - b. Explain stuck at fault model in combinational circuits.

(08 Marks)

OR

- 10 a. Demonstrate write operation and read operation for four transistor dynamic CMOS memory cell. (08 Marks)
 - b. Write a note on logic verification.

(08 Marks)

* * * * *