

USN Learning Resource Centre
Acharya Institutes

18EC55

Fifth Semester B.E. Degree Examination, July/August 2022 **Electromagnetic Waves**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Convert point P(1, 3, 5) from Cartesian to cylindrical and spherical coordinates. Also write the equation for differential surface and differential volume for cylindrical and spherical system.

 (08 Marks)
 - b. A line charge of 2 nc/m lies along y-axis while surface charge densities of 0.1 and -0.1 nc/m² exist on the plane z = 3 and z = -4 respectively. Find the electric field intensity at a point (1, -7, 2).
 - c. A point charge of 50 nc each are located at A(1, 0, 0), B(-1, 0, 0), C(0, 1, 0) and D(0, -1, 0) in free space. Find the total force on the charge at A. (06 Marks)

OR

- 2 a. Compute the value of \overline{E} at P(1, 1, 1) caused by four identical 3nc charges located at P₁(1, 1, 0), P₂(-1, 1, 0), P₃(-1, -1, 0) and P₄(1, -1, 0). (08 Marks)
 - b. Define electric field intensity and flux density. Derive the expression for electric field intensity due to several point charges. (06 Marks)
 - c. Calculate the total charge for the defined volume. Given that $0.1 \le |x|$, |y|, $|z| \le 0.2$

$$\rho_{V} = \frac{1}{x^3 y^3 z^3} \tag{06 Marks}$$

Module-2

- 3 a. Evaluate both sides of divergence theorem for the defined plane in which $1 \le x \le 2$, $2 \le y \le 3$, $3 \le z \le 4$. $\overline{D} = 4x\overline{a}_x + 3y^2\overline{a}_y + 2z^3\overline{a}_z$ c/m². (10 Marks)
 - b. Determine workdone in carrying a charge of -2c from (2, 1, -1) to (8, 2, -1) in the electric field $\overline{E} = y\overline{a}_x + x\overline{a}_y$ V/m, (in Cartesian system). (05 Marks)
 - c. Considering the path along the parabola $x = 2y^2$, obtain the equation of continuity in integral and differential form. (05 Marks)

OR

- 4 a. Let $V = \frac{\cos 2\phi}{r}$ in the free space in cylindrical system:
 - (i) Find \overline{E} at B(2, 30°, 1)
 - (ii) Find the volume charge density at point A(0.5, 60°, 1) (08 Marks)
 - b. Calculate the numerical value for div \overline{D} at the point P(2, 3, -1) for $\overline{D} = (2xyz y^2)\overline{a}_x + (x^2z 2xy)\overline{a}_y + x^2y\overline{a}_z$ c/m² (06 Marks)
 - c. Define potential difference. Derive the expression for potential due to several point charges.

 (06 Marks)

Module-3

5 a. Solve the Laplace's equation for the potential field in the homogeneous region between the two concentric conducting spheres with radii a and b, such that b > a if potential V = 0 at r = b and $V = V_0$ at r = a. Also find the capacitance between the two concentric spheres.

(09 Marks)

b. State and explain Biot-Savart law.

(05 Marks)

c. If the magnetic field intensity in a region is $\overline{H} = (3y - 2)\overline{a}_z + 2x\overline{a}_y$. Find the current density at the origin. (06 Marks)

OR

6 a. State and prove uniqueness theorem.

(07 Marks)

- b. Find \overline{E} at P(3, 1, 2) for the field of two coaxial conducting cylinders V = 50 V at $\rho = 2$ m and V = 20 V at $\rho = 3$ m. (06 Marks)
- c. Evaluate both side of the Stoke's theorem for the filed $\overline{H} = 6xy\overline{a}_x 3y^2\overline{a}_y$ A/m and the rectangular path around the region $2 \le x \le 5$, $-1 \le y \le 1$, z = 0. Let the direction of \overline{d}_s to be \overline{a}_z .

Module-4

- 7 a. Obtain the expression for magnetic force between differential current elements. (06 Marks)
 - b. Calculate the normal components of the magnetic field which traversal from medium 1 to medium 2 having $\mu_{r_1} = 2.5$ and $\mu_{r_2} = 4$. Given that $\overline{H}_1 = -30\overline{a}_x + 50\overline{a}_y + 70\overline{a}_z$ V/m. (06 Marks)
 - c. Derive the integral and differential form of Faraday's law.

(08 Marks)

OR

- 8 a. A current element $I_1 dL_1 = 10^{-4} \bar{a}_z$ Am is located at $P_1(2, 0, 0)$ and another current element $I_2 dL_2 = 10^{-6} [\bar{a}_x 2\bar{a}_y + 3\bar{a}_z]$ Am is located at $P_2(-2, 0, 0)$. Both are in free space. Find:
 - (i) Force exerted on I_2dL_2 by I_1dL_1
 - (ii) Force exerted on I₁dL₁ by I₂dL₂

(06 Marks)

- b. Calculate the magnetization in magnetic material where:
 - (i) $\mu = 1.8 \times 10^5 \, (H/m)$ and $M = 120 \, (A/m)$
 - (ii) $\mu_r = 22$, there are 8.3×10^{28} atoms/m³ and each atom has a dipole moment of $4.5 \times 10^{-27} \, (A/m^2)$
 - (iii) B = 300 (μ T) and $\chi_m = 15$.

(06 Marks)

c. Obtain the magnetic boundary conditions at interface between two different magnetic material. (08 Marks)

Module-5

9 a. List and explain Maxwell's equation in point form and integral form.

(06 Marks)

b. Calculate intrinsic impedance η_1 the propagation constant γ and wave velocity υ for a conducting medium in which $\sigma = 58$ Ms/m, $\mu_r = 1$, $\epsilon_r = 1$ at a frequency of 100 MHz.

(06 Marks)

c. The \overline{H} field in free space is given by $\overline{H}(x,t) = 10\cos(10^8 t - \beta x)\overline{a}_y$ A/m. Find β , λ and E(x,t) at P(0.1, 0.2, 0.3) and t = 1 ns. (08 Marks)

OR

10 a. State and prove Poynthing theorem.

(08 Marks)

- b. A metal sheet of aluminium has $\sigma = 38.2$ M $^{\circ}$ /m and $\mu_r = 1$. Calculate the skin depth δ , propagation constant γ and velocity of propagation v at the frequency of 1.6 MHz. (06 Marks)
- c. Do the field $\overline{E} = E_m \sin x \sin t \, \overline{a}_y$ and $\overline{H} = \frac{E_m}{\mu_0} \cos x \cot \overline{a}_z$. Satisfy Maxwell's equation.

(06 Marks)