15EC54

Fifth Semester B.E. Degree Examination, July/August 2022 Information Theory and Coding

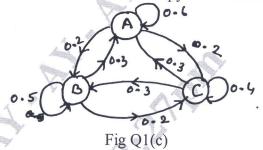
Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Derive an expression for average information content (entropy) of long independent message. (05 Marks)
 - b. A source emits one of the four probable message S_1 , S_2 , S_3 and S_4 with probabilities of $\frac{7}{16}$, $\frac{5}{16}$, $\frac{1}{8}$, and $\frac{1}{8}$ respectively. Find the entropy of the source. List all the elements for the second extension of this source. Hence, show that $H(s^2) = 2H(s)$. (05 Marks)
 - c. For the first order Mark off source shown in Fig Q1(c)
 - i) Find the stationary distribution
 - ii) Find the entropy of each state and hence entropy of the source



(06 Marks)

OR

- a. In a facsimile transmission of picture, there are about 2.25×10^6 pixel/frame. For a good reproduction 12 brightness levels are necessary. Assume all these levels are equally likely to occur. Find the rate of information if one picture is to be transmitted every 3 minutes. What is the sources efficiency of this facsimile transmitter? (06 Marks)
 - b. A binary source is emitting an independent sequence of '0' and '1' with probability P and 1-P respectively. Plot the entropy of source versus P. (04 Marks)
 - c. Show that $H(S^n) = n$. H(s) where n is the n^{th} order extension of S.

(06 Marks)

Module-2

3 a. Design an encoder using Shannon's encoding algorithm for a source having 5 symbols and probability $P = \frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{8}$, $\frac{3}{16}$, $\frac{5}{16}$. Find the efficiency of the coding scheme.

(12 Marks)

b. Write a note on Lempel – ZIV algorithm.

(04 Marks)

OR

4 a. A source produces two symbols 'A' and 'B' with probability 0.05 and 0.95 respectively. Construct a suitable binary code such that the efficiency of a coding is at least 65%. Use Shannon Fano encoding. (10 Marks)

b. Design a Binary source code for the source shown Using Huffman's coding procedure.

$$S = S_1, S_2, S_3, S_4, S_5, S_6, S_7$$

$$P = \frac{9}{32}, \frac{3}{32}, \frac{3}{32}, \frac{2}{32}, \frac{9}{32}, \frac{3}{32}, \frac{3}{32}$$

Find coding efficiency.

(06 Marks)

Module-3

- 5 a. Define Mutual information and list all the properties of mutual information. Prove any one (06 Marks) of them.
 - b. For the joint probability matrix. Compute individually H(X), H(Y), H(X, Y), H(X/Y), H(Y/X) and I(X, Y) verify the relationship among these entropies.

$$P(X,Y) = \begin{bmatrix} 0.05 & 0 & 0.20 & 0.05 \\ 0 & 0.10 & 0.10 & 0 \\ 0 & 0 & 0.20 & 0.10 \\ 0.05 & 0.05 & 0 & 0.10 \end{bmatrix}$$

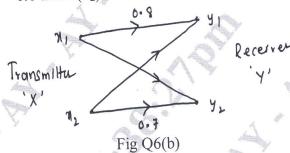
(10 Marks)

OF

a. Show that H(X, Y) = H(X/Y) + H(Y) bits /sym.

(04 Marks)

b. Find the mutual information and channel capacity using Muroga's method shown in Fig Q6(b), given $P(x_1) = 0.6$ and $P(x_2) = 0.4$



(12 Marks)

Module-4

- 7 a. Design a single error correcting code with a message block size of 11 and show that by an example that it can correct single error. (08 Marks)
 - b. The parity check bits of a (8, 4) block code are generated by

The parity check bits of a
$$(d_1, d_2)$$
 block code are generally $C_5 = d_1 + d_2 + d_4$ $C_6 = d_1 + d_2 + d_3$ $C_7 = d_1 + d_3 + d_4$

 $C_8 = d_2 + d_3 + d_4$ where $d_1d_2d_3$ and d_4 are the message bits.

- i) Find the generator matrix and parity check matrix for this code
 - ii) Find the minimum weight of this code.
 - iii) Show through this example that this code can detect and correct errors. (08 Marks)

OR

- 8 a. A(15, 5) Linear cyclic code has a generator polynomial $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$
 - i) Draw the block diagram of an encoder and syndrome calculator for this code
 - ii) Find the code polynomial for the message polynomial $D(x) = 1 + x^2 + x^4$ in systematic form
 - ii) Is $V(x) = 1 + x^4 + x^6 + x^8 = x^{14}$ is a code polynomial.

(10 Marks)

- b. A linear Hamming code is described by generator polynomial $g(x) = 1 + x + x^3$
 - i) Determine the generator matrix G and parity check matrix H
 - ii) Design the encoder circuit. (06 Marks)

Module-5

- 9 Consider the (3, 1, 2) convolutional code with $g^{(1)} = 110$, $g^{(2)} = 101$ and $g^{(3)} = 111$.
 - i) Draw the encoder block diagram
 - ii) Find the generator matrix
 - iii) Find the codeword corresponding to the information source (11101) using the time domain approach and transform domain approach. (16 Marks)

OR

- For a (2, 1, 2) convolutional encoder with $g^{(1)} = 111 g^{(2)} = 101$.
 - i) Draw the encoder diagram
 - ii) Write the state transition table and state diagram
 - iii) Draw the code tree
 - iv) Find the codeword for the message sequence 10111
 - v) Draw the Trellis diagram.

(16 Marks)

3 of 3