Librarian Learning Resource Centre Acharya Institute	CBCS SCHEME	
USN Institutes		

Third Semester B.E. Degree Examination, July/August 2022
Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 80

15EC36

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and prove Coulomb's law. (05 Marks)

b. Three equal charges of 1 μ C each are located at the three corners of a square of 10 cm side. Find the electric field intensity at the forth vacant corner of the square. (06 Marks)

c. A charge $Q_1 = -20\mu C$ is located at P(-6,4,6) and a charge $Q_2 = 50\mu C$ is located at R(5, 8, -2) in a free space. Find the force exerted on Q_2 by Q_1 in vector form. The distance given in meter. (05 Marks)

OR

2 a. Derive the expression of electric field intensity for infite line charge. (08 Marks)

b. Find the electric field \vec{E} at the origin, if the following charge distributions are present in free space:

(i) Point charge 12 nC at P(2, 0, 6)

(ii) Uniform line charge of linear 3 nC at x = 2, y = 3. (08 Marks)

Module-2

3 a. State and prove the Gauss's law.

(05 Marks)

b. State and prove Divergence theorem.

(05 Marks)

c. If $\vec{D} = xy^2z^2\hat{a}_x + x^2yz^2\hat{a}_y + x^2y^2z\hat{a}_z C/m^2$.

Find:

(i) An expression for ρ_v

(ii) The total charge within the cube defined by $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$. (06 Marks)

OR

4 a. Derive the expression for work done interms of line integral.

(06 Marks)

b. Given $V = \frac{\cos 2\phi}{r}$ in the free space, in cylindrical system:

(i) Find \overrightarrow{E} at B(2, 30°, 1).

(ii) Find the volume charge density at point $A(0.5, 60^{\circ}, 1)$.

(10 Marks)

Module-3

a. Derive the expression for Poisson's and Laplace's equation.

(04 Marks)

b. Determine whether or not the following potential field satisfy the Laplace's equation:

(i) $V = x^2 - y^2 + z^2$

(ii) $V = r \cos \phi + z$

(04 Marks)

c. Use Laplace's equation to find the capacitance per unit length of a co-axial cable of inner radius 'a' in and outer radius 'b' m. Assume $V = V_0$ at r = a, V = 0 at r = b. (08 Marks)

OR

6 a. State and explain Biot-Savart law.

(05 Marks)

b. State and prove the Stoke's theorem.

(06 Marks)

c. Given $\vec{A} = (\sin 2\phi)\hat{a}_{\phi}$ in cylindrical coordinates. Find curl of \vec{A} at $\left(2, \frac{\pi}{4}, 0\right)$. (05 Marks)

Module-4

- 7 a. Derive the expression for the force on a differential current element. (06 Marks)
 - b. A point charge of Q = 1.2C has velocity $\vec{v} = (5\hat{a}_x + 2\hat{a}_y 3\hat{a}_z)$ m/s. Find the magnitude of the force exerted on the charge if,

(i)
$$\vec{E} = -18\hat{a}_x + 5\hat{a}_y - 10\hat{a}_z \text{ V/m}$$

(ii)
$$\vec{B} = -4\hat{a}_x + 4\hat{a}_y + 3\hat{a}_z T$$
. (10 Marks)

OR

- 8 a. Write short notes on Magnetization and Permeability. (06 Marks)
 - b. Derive the boundary condition for tangential component in magnetic field. (05 Marks)
 - c. A coil of 500 turns is wound on a closed iron ring of mean radius 10 cm and cross section area of 3 cm². Find the self inductance of the winding if the relative permeability of iron is 800. (05 Marks)

Module-5

- 9 a. Write the Maxwell equations in point form and integral form. (06 Marks)
 - b. Given $\vec{E} = E_m \sin(\omega t \beta z)\hat{a}_y$ in free space. Find \vec{D} , \vec{B} and \vec{H} . (06 Marks)
 - c. Prove that $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$. (04 Marks)

OR

- 10 a. Derive the general expression for uniform plane in free space. (05 Marks)
 - b. State and prove Poynting theorem. (07 Marks)
 - c. Calculate the attenuation constant and phase constant for a uniform plane wave with frequency of 10 GHz in polythelene for which $\mu=\mu_o$, $\epsilon_r=2.3$ and $\sigma=256\times10^{-4}$ σ/m .

(04 Marks)

* * * * *