	4)	
	tice	
	ractic	
	0	
	s mal	
	a	
	ted	
	treate	
S.	be tr	
pages	illb	
	WI	
an	0,	
remaining olank		
III	∞	
aln	42-	
	eg.	
0	su e	
i me	itte	
O	W	
IIIIcs	us	
	ıtioı	
CLOSS	dna	
5	0	
CHAROTTAL	l /or	
age	and	
3	OL	
araw	luator	
3	val	
1	to e	
SC		
bu	peal	
compulsoring	apl	
5	tion,	
CIN	atic	
3	fica	
a.	nti	
your	ide	
200	of	
111	ling	
unpicung	ali	
JIII	reve	
5	>	
5	An	
	7	

Learning Resource Centre Acharya Institutes	GBGS SCHEME

UF33

15CS753

Seventh Semester B.E. Degree Examination, July/August 2022 Digital Image Processing

Time: 3 hrs.

USN

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain the steps involved in digital image processing with block diagram. (10 Marks)
 - b. Explain the role of sampling and quantization.

(06 Marks)

OR

- 2 a. Explain the components of Image Processing system, with neat diagram. (10 Marks)
 - b. Discuss distance metrics used in digital images.

(06 Marks)

Module-2

- 3 a. Explain following gray level transformation:
 - i) Image Negative

Librarian

- ii) Log transformation
- iii) Contrast stretching.

(09 Marks)

b. Explain how arithmetic operations are useful in image enhancement.

(07 Marks)

OR

4 a. Write an Algorithm to perform histogram equalization. Consider 8-level 64 × 64 image with gray values (0, 1,, 7). Perform histogram equalization of given image shown in Fig.Q.4(a).

 r_K
 0
 1
 2
 3
 4
 5
 6
 7

 n_K
 790
 1023
 850
 656
 329
 245
 122
 81

Fig.Q.4(a)

b. Explain image smoothing in spatial Domain.

(08 Marks)

Module-3

- 5 a. Explain how ideal band pass and Butterworth band pass filter is used for filtering. (08 Marks)
 - b. Explain Homomorphic filters for image enhancement.

(08 Marks)

OR

- 6 a. Explain any four properties of two dimensional discrete Fourier transform. (08 Marks)
 - b. Obtain the equation for DFT from the continuous transform of sampled function of one variable.

 (08 Marks)

Module-4

- 7 a. Explain image segmentation. Discuss about point detection and line detection. (08 Marks)
 - b. Define basic thresholding. Write an iterative algorithm for optimal threshold selection.

(08 Marks)

OR

8 a. Explain the algorithm for curve detection using Hough transformation.

(08 Marks)

b. Explain split and merge algorithm.

(08 Marks)

Module-5

- 9 a. Define image compression. Explain types of redundancies in the images that are used to achieve higher compression ratio. (08 Marks)
 - b. Define Run-Length encoding with example.

(08 Marks)

OR

a. Explain Huffman coding technique. Given the following symbols and their probability in Fig.Q.10(a) of occurrence. Calculate the code and average length of the code. (10 Marks)

Symbol	Probability
a2	0.4
a6	0.3
a1	0,1
a4	0.1
a3 🐣	0.06
a5	0.04

Fig.Q.10(a)

b. Explain in brief LZW coding model.

(06 Marks)