Librarian Learning Resource Centre Acharya Institutes							GBCS SCHEMI							
USN							27							

18CS654

Sixth Semester B.E. Degree Examination, July/August 2022 Introduction to Operating System

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define an Operating System. Explain the role of an operating system from different viewpoints. (06 Marks)
 - b. What are the eight major activities of an operating system with regard to process management, memory and mass storage management? (08 Marks)
 - c. Describe the services provided by an operating system which are helpful to the user.

(06 Marks)

OR

- 2 a. Explain Dual-mode operation with a neat diagram. (04 Marks)
 - b. Define simple, layered and micro kernels approach for structuring the operating system along with relevant diagrams. (12 Marks)
 - c. Explain the "graceful degradation" and "fault tolerant" in a multiprocessor systems.

(04 Marks)

Module-2

- 3 a. What is a process? Describe the different states of a process with a neat diagram. (06 Marks)
 - b. Briefly explain co-operating processes and mechanisms of IPC using shared memory and message passing with relevant diagrams. (12 Marks)
 - c. Explain the need for context switching between processes. (02 Marks)

OR

4 a. What is a thread? Explain the different multi threading models.

(06 Marks)

- b. What information is kept in process control block? Explain with a neat diagram. (08 Marks)
- c. Demonstrate the operations of process creation and process termination. (06 Marks)

Module-3

- 5 a. Describe the scheduling criteria that must be kept in mind while choosing different scheduling algorithms. (06 Marks)
 - b. Give the differences between short-term, medium-term and long-term scheduling. (06 Marks)
 - c. Briefly describe the FCFS and SJF scheduling algorithms with examples. (08 Marks)

OR

6 a. Consider the following set of processes, with the length of the cpu burst given in milliseconds.

Process	Burst time	Priority
P_1	10	3
P_2	1	1
P_3	2	3
P ₄	1	4
P ₅	5	2

The processes are assumed to have arrived in the order P_1 , P_2 , P_3 , P_4 , P_5 all at time 0. Draw 4 Gantt charts that illustrates the execution of these processes using the following scheduling algorithms: FCFS, SJF non preemptive priority (smaller priority number implies a higher priority) and RR (quantum = 1). What is the average turnaround time and waiting time for each of these scheduling algorithms? (14 Marks)

- b. Differentiate the following with examples:
 - Preemptive and non-preemptive scheduling. i)
 - I/O bound and cpu bound ii)
 - Scheduler and dispatcher. iii)

(06 Marks)

Module-4

Define dead lock. Write a note on 4 necessary conditions that arise dead locks.

Assume that there are 5 processes Po through P4 and 4 types of resources. At time To we

have	the	fol!	lowing	state.
ma v C	LIIU	101	0 11 1110	

State.	A	lloc	otio	n	Max				Available				
Process	A		C	CD		В	C	D	A	В	C	D	
P_0	A 0	B 0	1	2	0	0	1	2	1	5	2	0	
P ₁	1	0	0	0	1	7	5	0					
$\overline{P_2}$	1	3	5	4	2	3	5	6					
P_3	0	6	3	2	0	6	5_	2					
P_4	0	0	1	4	0	6	5	6					

Apply Bankers algorithm to answer the following:

- What is the content of need matrix? i)
- Is the system in a safe state? ii)
- If a request from a process $P_1(0, 4, 2, 0)$ arrives, can it be granted?

(08 Marks) (06 Marks)

Write a note on "safe state".

OR

- Write short notes on: 8
 - External and Internal fragmentation.
 - (06 Marks) Dynamic loading and linking.
 - b. Given memory partitions of 100K, 500K, 200K, 300K and 600K (in order), how would each of the first-fit, best-fit and worst-fit algorithms place processes of 212K, 417K, 112K and 426K (in order) which algorithm makes the most efficient use of memory. (06 Marks)
 - Explain with the help of supporting hardware diagram. How the TLB improves the (08 Marks) performance of a demand paging system.

Module-5

- (06 Marks) Explain virtual memory and its advantages. What is the procedure for handling page fault with a neat block diagram? (08 Marks) (06 Marks)
 - Write a note on copy-on-write.

OR

- (06 Marks) What are the typical attributes of a file? 10 (06 Marks)
 - Define operations that can be performed on files. Explain various access methods of files.

(08 Marks)